Suppr超能文献

PITX1基因内DNA甲基化及相邻的长链非编码RNA C5orf66-AS1是头颈部鳞状细胞癌患者的预后生物标志物。

Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas.

作者信息

Sailer Verena, Charpentier Arthur, Dietrich Joern, Vogt Timo J, Franzen Alina, Bootz Friedrich, Dietrich Dimo, Schroeck Andreas

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of America.

Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America.

出版信息

PLoS One. 2018 Feb 9;13(2):e0192742. doi: 10.1371/journal.pone.0192742. eCollection 2018.

Abstract

BACKGROUND

Patients with squamous cell cancer of the head and neck region (HNSCC) are at risk for disease recurrence and metastases, even after initial successful therapy. A tissue-based biomarker could be beneficial to guide treatment as well as post-treatment surveillance. Gene methylation status has been recently identified as powerful prognostic biomarker in HNSCC. We therefore evaluated the methylation status of the homeobox gene PITX1 and the adjacent long intergenic non-coding RNA (lincRNA) C5orf66-AS1 in publicly available datasets.

METHODS

Gene methylation and expression data from 528 patients with HNSCC included in The Cancer Genome Atlas (TCGA, there obtained by using the Infinium HumanMethylation450 BeadChip Kit) were evaluated and methylation and expression levels of PITX1 and lincRNA C5orf66-AS1 was correlated with overall survival and other parameters. Thus, ten beads targeting PITX1 exon 3 and three beads targeting lincRNA C5orf66-AS1 were identified as significant candidates. The mean methylation of these beads was used for further correlation and the median was employed for dichotomization.

RESULTS

Both PITX1 exon 3 and lincRNA C5orf66-AS1 were significantly higher methylated in tumor tissue than in normal adjacent tissue (NAT) (PITX1 exon 3: tumor tissue 58.1%, NAT: 31.7%, p<0.001; lincRNA C5orf66-AS1: tumor tissue: 27.4%, NAT: 18.9%, p<0.001). In a univariate analysis, hypermethylation of both loci was significantly associated with the risk of death (univariate: exon 3: Hazard ratio (HR): 4.97 [1.78-16.71], p = 0.010, lincRNA C5orf66-AS1: Hazard ratio (HR): 12.23 [3.01-49.74], p<0.001). PITX1 exon 3 and lincRNA C5orf66-AS1 methylation was also significantly correlated with tumor localization, T category, human papilloma virus (HPV)-negative and p16-negative tumors and tumor grade. Kaplan-Meier analysis showed, that lincRNA C5orf66-AS1 hypomethylation was significantly associated with overall survival (p = 0.001) in the entire cohort as well in a subgroup of HPV-negative tumors (p = 0.003) and in patients with laryngeal tumors (p = 0.022).

CONCLUSION

Methylation status of PITX1 and even more so of lincRNA C5orf66-AS1 is a promising prognostic biomarker in HNSCC, in particular for HPV-negative patients. Further prospective evaluation is warranted.

摘要

背景

头颈部鳞状细胞癌(HNSCC)患者即使在初始治疗成功后仍有疾病复发和转移的风险。基于组织的生物标志物可能有助于指导治疗以及治疗后的监测。基因甲基化状态最近已被确定为HNSCC中强大的预后生物标志物。因此,我们在公开可用的数据集中评估了同源框基因PITX1和相邻的长链基因间非编码RNA(lincRNA)C5orf66-AS1的甲基化状态。

方法

评估了来自癌症基因组图谱(TCGA,通过使用Infinium HumanMethylation450 BeadChip试剂盒获得)的528例HNSCC患者的基因甲基化和表达数据,并将PITX1和lincRNA C5orf66-AS1的甲基化和表达水平与总生存期和其他参数相关联。因此,确定了靶向PITX1外显子3的10个珠子和靶向lincRNA C5orf66-AS1的3个珠子为重要候选物。这些珠子的平均甲基化用于进一步的相关性分析,中位数用于二分法。

结果

肿瘤组织中PITX1外显子3和lincRNA C5orf66-AS1的甲基化均显著高于相邻正常组织(NAT)(PITX1外显子3:肿瘤组织58.1%,NAT:31.7%,p<0.001;lincRNA C5orf66-AS1:肿瘤组织:27.4%,NAT:18.9%,p<0.001)。在单变量分析中,两个位点的高甲基化均与死亡风险显著相关(单变量:外显子3:风险比(HR):4.97[1.78-16.71],p = 0.010,lincRNA C5orf66-AS1:风险比(HR):12.23[3.01-49.74],p<0.001)。PITX1外显子3和lincRNA C5orf66-AS1甲基化也与肿瘤定位、T类别、人乳头瘤病毒(HPV)阴性和p16阴性肿瘤以及肿瘤分级显著相关。Kaplan-Meier分析表明,在整个队列以及HPV阴性肿瘤亚组(p = 0.003)和喉肿瘤患者(p = 0.022)中,lincRNA C5orf66-AS1低甲基化与总生存期显著相关(p = 0.001)。

结论

PITX1的甲基化状态,尤其是lincRNA C5orf66-AS1的甲基化状态,是HNSCC中一个有前景的预后生物标志物,特别是对于HPV阴性患者。有必要进行进一步的前瞻性评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81df/5806891/faa4741c362e/pone.0192742.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验