School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798.
Department of Mechanical Engineering , PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur , Dumna Airport Road , Jabalpur - 482005 , Madhya Pradesh , India.
Biomacromolecules. 2018 May 14;19(5):1425-1434. doi: 10.1021/acs.biomac.8b00074. Epub 2018 Feb 19.
Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto poly (amidoamine) (PAMAM-G5) dendrimers. Herein, the structure activity relationships of platelet adhesion and activation is evaluated for the first time on the cured PAMAM-g-diazirine bioadhesives. Three strategies were employed to prevent healthy human donor platelets from adhering and activating on light-cured bioadhesive surfaces: (1) Attenuation of cationic surface charge, (2) antifouling composites by incorporating heparin and alginate in uncured formulation, and (3) heparin wash of cured bioadhesive surface. Topographical imaging of cured and ethanol dehydrated bioadhesive surfaces was used to quantify the adhered and activated platelets with scanning electron microscopy, whose resolution allowed identification of round senescent, short dendritic, and long dendritic platelets. Cured surfaces of PAMAM-g-diazirine (15%) had 10300 ± 500 adhered platelets mm with 99.7% activation into short/long dendritic cells. Reduction of primary amines by higher degree of diazirine grafting or capping of free amines by acetylation reduces platelet adherence (2400 ± 200 vs 3000 ± 300, respectively). Physical incorporation of heparin and alginate in the formulations reduced the activated platelet; 1300 ± 300 and 300 ± 50, activated platelets mm, in comparison with additive free adhesive formulation. Similarly, heparin rinse of the surface of additive free bioadhesive reduced the activated platelet to platelets of heparin composites at 600 ± 100 platelets mm. PAMAM-g-diazirine (15%) bioadhesive retained the photocured mechanical properties and lap shear adhesion despite the addition of heparin and alginate additives.
生物黏合剂是目前临床上用于修复接触血液的软组织的一种未满足的需求,它可以在不引起血栓的情况下进行修复。最近,通过将叠氮化物接枝到聚(酰胺-胺)(PAMAM-G5)树枝状大分子上,合成了具有按需固化、可调模量和湿黏附性优点的碳烯前体生物黏合剂。在此,首次在光固化的 PAMAM-g-叠氮化物生物黏合剂上评估了血小板黏附和激活的结构活性关系。为了防止健康的人类供体血小板黏附和在光固化生物黏附表面上激活,采用了三种策略:(1)减弱阳离子表面电荷,(2)在未固化配方中加入肝素和藻酸盐的抗污复合材料,和(3)肝素冲洗固化生物黏附表面。使用扫描电子显微镜对固化和乙醇脱水生物黏附表面进行形貌成像,以定量分析黏附的和激活的血小板,其分辨率允许识别圆形衰老、短树突状和长树突状血小板。PAMAM-g-叠氮化物(15%)的固化表面有 10300±500 个黏附的血小板/mm,有 99.7%的血小板被激活成短/长树突状细胞。通过更高程度的叠氮化物接枝或通过乙酰化封端游离胺来减少伯胺可以减少血小板黏附(分别为 2400±200 与 3000±300)。在配方中物理掺入肝素和藻酸盐可以减少激活的血小板;与无添加剂的黏附剂配方相比,分别为 1300±300 和 300±50 个激活的血小板/mm。同样,肝素冲洗无添加剂的生物黏附表面也可以将激活的血小板减少到肝素复合材料中的血小板,为 600±100 个血小板/mm。尽管添加了肝素和藻酸盐添加剂,但 PAMAM-g-叠氮化物(15%)生物黏合剂仍保留了光固化的机械性能和搭接剪切黏附力。