Suppr超能文献

使用行为分析增加锻炼:一项随机 n-of-1 研究。

Using Behavioral Analytics to Increase Exercise: A Randomized N-of-1 Study.

机构信息

School of Nursing, Columbia University, New York, New York.

Center for Behavioral Cardiovascular Health, Columbia University Medical Center, New York, New York; Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, New York.

出版信息

Am J Prev Med. 2018 Apr;54(4):559-567. doi: 10.1016/j.amepre.2017.12.011. Epub 2018 Feb 21.

Abstract

INTRODUCTION

This intervention study used mobile technologies to investigate whether those randomized to receive a personalized "activity fingerprint" (i.e., a one-time tailored message about personal predictors of exercise developed from 6 months of observational data) increased their physical activity levels relative to those not receiving the fingerprint.

STUDY DESIGN

A 12-month randomized intervention study.

SETTING/PARTICIPANTS: From 2014 to 2015, 79 intermittent exercisers had their daily physical activity assessed by accelerometry (Fitbit Flex) and daily stress experience, a potential predictor of exercise behavior, was assessed by smartphone.

INTERVENTION

Data collected during the first 6 months of observation were used to develop a person-specific "activity fingerprint" (i.e., N-of-1) that was subsequently sent via email on a single occasion to randomized participants.

MAIN OUTCOME MEASURES

Pre-post changes in the percentage of days exercised were analyzed within and between control and intervention groups.

RESULTS

The control group significantly decreased their proportion of days exercised (10.5% decrease, p<0.0001) following randomization. By contrast, the intervention group showed a nonsignificant decrease in the proportion of days exercised (4.0% decrease, p=0.14). Relative to the decrease observed in the control group, receipt of the activity fingerprint significantly increased the likelihood of exercising in the intervention group (6.5%, p=0.04).

CONCLUSIONS

This N-of-1 intervention study demonstrates that a one-time brief message conveying personalized exercise predictors had a beneficial effect on exercise behavior among urban adults.

摘要

介绍

本干预研究使用移动技术,调查那些随机接受个性化“活动指纹”(即根据 6 个月的观察数据制定的关于个人运动预测因素的一次性定制信息)的人相对于未接受指纹的人是否能提高他们的身体活动水平。

研究设计

一项为期 12 个月的随机干预研究。

地点/参与者:2014 年至 2015 年,79 名间歇性运动者通过加速度计评估他们的日常身体活动,智能手机评估日常压力体验,这是运动行为的一个潜在预测因素。

干预措施

在观察的前 6 个月期间收集的数据用于开发特定于个人的“活动指纹”(即 N-of-1),随后通过电子邮件在单个场合发送给随机参与者。

主要观察指标

在对照组和干预组内和组间分析锻炼天数百分比的前后变化。

结果

对照组在随机分组后显著降低了他们的锻炼天数比例(减少 10.5%,p<0.0001)。相比之下,干预组的锻炼天数比例没有明显下降(减少 4.0%,p=0.14)。与对照组观察到的下降相比,接收活动指纹显著增加了干预组锻炼的可能性(增加 6.5%,p=0.04)。

结论

这项 N-of-1 干预研究表明,一次性简短信息传达个性化运动预测因素对城市成年人的运动行为有有益影响。

相似文献

1
4
Community wide interventions for increasing physical activity.全社区范围内增加身体活动的干预措施。
Cochrane Database Syst Rev. 2015 Jan 5;1(1):CD008366. doi: 10.1002/14651858.CD008366.pub3.
10
Mobile phone messaging for preventive health care.用于预防性医疗保健的手机短信服务。
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD007457. doi: 10.1002/14651858.CD007457.pub2.

引用本文的文献

1
A systematic review on eHealth technology personalization approaches.关于电子健康技术个性化方法的系统评价。
iScience. 2024 Aug 19;27(9):110771. doi: 10.1016/j.isci.2024.110771. eCollection 2024 Sep 20.

本文引用的文献

2
Epidemiology of Physical Activity and Exercise Training in the United States.美国身体活动与运动训练的流行病学
Prog Cardiovasc Dis. 2017 Jun-Jul;60(1):3-10. doi: 10.1016/j.pcad.2017.01.004. Epub 2017 Jan 12.
4
The Frequency and Health Benefits of Physical Activity for Older Adults.老年人身体活动的频率及健康益处
Popul Health Manag. 2017 Jun;20(3):199-207. doi: 10.1089/pop.2016.0071. Epub 2016 Sep 13.
5
Accuracy of Heart Rate Watches: Implications for Weight Management.心率手表的准确性:对体重管理的影响。
PLoS One. 2016 May 27;11(5):e0154420. doi: 10.1371/journal.pone.0154420. eCollection 2016.
8
Sample size calculations for micro-randomized trials in mHealth.移动健康中微随机试验的样本量计算。
Stat Med. 2016 May 30;35(12):1944-71. doi: 10.1002/sim.6847. Epub 2015 Dec 28.
10
Precision Public Health for the Era of Precision Medicine.精准医学时代的精准公共卫生。
Am J Prev Med. 2016 Mar;50(3):398-401. doi: 10.1016/j.amepre.2015.08.031. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验