Suppr超能文献

化学合成与生物合成银纳米颗粒(AgNPs)抗利什曼原虫活性的比较研究

Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs).

作者信息

Ullah Ikram, Cosar Gizem, Abamor Emrah Sefik, Bagirova Melahat, Shinwari Zabta Khan, Allahverdiyev Adil M

机构信息

1Departmeny of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan.

2Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, 34000 Turkey.

出版信息

3 Biotech. 2018 Feb;8(2):98. doi: 10.1007/s13205-018-1121-6. Epub 2018 Jan 25.

Abstract

The present study was conducted to investigate the antileishmanial activity of biogenic silver nanoparticles (AgNPs) compared to chemically synthesized AgNPs. A nano dimension size (10-15 nm) biogenic AgNPs was produced and characterized by UV-Vis spectroscopy and X-rays diffraction. The chemically synthesized AgNPs was recovering from our previous study with a nanoparticle (NP) size in the range of 10-40 nm. The antileishmanial activities were investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. The infectivity was determined by Giemsa staining of the infected macrophages cells. Nitric oxide (NO) accumulation was measured by Griess reagent using NaNO as a positive control. After 24 h of exposure with nanoparticles (NPs), a concentration-dependent growth inhibition was observed. The IC values were determined against promastigotes of as 19.42 ± 2.76 µg/ml for leaves aqueous extract mediated AgNPs, 30.71 ± 1.91 µg/ml for stem mediated AgNPs and 51.23 ± 2.20 µg/ml for chemically synthesized AgNPs. It was also detected that all types of NPs produced NO at a significant level. However, the production of a high-level of NO in the biologically synthesized NPs activated macrophage cells, infected with promastigotes indicates that NO radicals are mainly responsible for induced cell death and a decrease in the pathogenicity of the parasites. Since, biogenic nanoparticles are cost-effective, eco-friendly, simple to synthesize, and more effective than chemically synthesized silver nanoparticles, therefore, it could be used as a potential alternative for the development of antileishmanial drugs.

摘要

本研究旨在调查生物源银纳米颗粒(AgNPs)与化学合成的AgNPs相比的抗利什曼原虫活性。制备了纳米尺寸(10 - 15纳米)的生物源AgNPs,并通过紫外可见光谱和X射线衍射对其进行表征。化学合成的AgNPs是从我们之前的研究中获得的,其纳米颗粒(NP)尺寸在10 - 40纳米范围内。通过3 -(4,5 - 二甲基噻唑 - 2 - 基)- 2,5 - 二苯基四氮唑溴盐细胞活力测定法研究抗利什曼原虫活性。通过对感染的巨噬细胞进行吉姆萨染色来确定感染性。使用亚硝酸钠作为阳性对照,通过格里斯试剂测量一氧化氮(NO)的积累。在用纳米颗粒(NPs)处理24小时后,观察到浓度依赖性的生长抑制。针对 前鞭毛体确定的IC值,叶水提取物介导的AgNPs为19.42±2.76微克/毫升,茎介导的AgNPs为30.71±1.91微克/毫升,化学合成的AgNPs为51.23±2.20微克/毫升。还检测到所有类型的NPs都能产生显著水平的NO。然而,生物合成的NPs中高水平的NO产生激活了感染 前鞭毛体的巨噬细胞,这表明NO自由基主要负责诱导细胞死亡和降低寄生虫的致病性。由于生物源纳米颗粒具有成本效益、生态友好、合成简单且比化学合成的银纳米颗粒更有效,因此,它可作为开发抗利什曼原虫药物的潜在替代品。

相似文献

引用本文的文献

4
Application of Silver Nanoparticles in Parasite Treatment.银纳米颗粒在寄生虫治疗中的应用。
Pharmaceutics. 2023 Jun 21;15(7):1783. doi: 10.3390/pharmaceutics15071783.

本文引用的文献

6
Status of vaccine research and development of vaccines for leishmaniasis.利什曼病疫苗的研发现状
Vaccine. 2016 Jun 3;34(26):2992-2995. doi: 10.1016/j.vaccine.2015.12.071. Epub 2016 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验