Department of Electrical Engineering, Columbia University, New York, NY 10027;
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1789-E1798. doi: 10.1073/pnas.1712313115. Epub 2018 Feb 5.
Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca-activated intracellular Ca-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.
单通道记录被广泛用于探索离子通道的功能特性。通常,由于信噪比的考虑,这种记录的带宽小于 10 kHz,这限制了用于研究快速门控动力学的时间分辨率大于 100 µs。在这里,我们提出了实验方法,将悬浮脂质双层与基于互补金属氧化物半导体(CMOS)集成电路(IC)技术的高带宽、低噪声跨阻放大器直接集成,以实现超过 500 kHz 的带宽和微秒级的时间分辨率。我们使用这种 CMOS 集成双层系统来研究 1 型肌浆网 Ca 释放通道(RyR1),这是一种位于肌浆网的 Ca 激活的细胞内 Ca 释放通道。我们能够区分多个在较低带宽记录中不明显的闭合状态,这表明存在一个额外的 Ca 结合位点,与负责激活的位点不同。我们的高带宽数据的扩展 beta 分布分析可用于推断最快可达 35 ns 的闭合状态闪烁事件。这些事件处于单分子离子迁移的范围内。