Suppr超能文献

在 CMOS 悬浮膜中以微秒分辨率对 RyR1 进行单通道记录。

Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes.

机构信息

Department of Electrical Engineering, Columbia University, New York, NY 10027;

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1789-E1798. doi: 10.1073/pnas.1712313115. Epub 2018 Feb 5.

Abstract

Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca-activated intracellular Ca-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.

摘要

单通道记录被广泛用于探索离子通道的功能特性。通常,由于信噪比的考虑,这种记录的带宽小于 10 kHz,这限制了用于研究快速门控动力学的时间分辨率大于 100 µs。在这里,我们提出了实验方法,将悬浮脂质双层与基于互补金属氧化物半导体(CMOS)集成电路(IC)技术的高带宽、低噪声跨阻放大器直接集成,以实现超过 500 kHz 的带宽和微秒级的时间分辨率。我们使用这种 CMOS 集成双层系统来研究 1 型肌浆网 Ca 释放通道(RyR1),这是一种位于肌浆网的 Ca 激活的细胞内 Ca 释放通道。我们能够区分多个在较低带宽记录中不明显的闭合状态,这表明存在一个额外的 Ca 结合位点,与负责激活的位点不同。我们的高带宽数据的扩展 beta 分布分析可用于推断最快可达 35 ns 的闭合状态闪烁事件。这些事件处于单分子离子迁移的范围内。

相似文献

3
Influence of Lipid Mimetics on Gating of Ryanodine Receptor.脂拟制剂对兰尼碱受体门控的影响。
Structure. 2018 Oct 2;26(10):1303-1313.e4. doi: 10.1016/j.str.2018.06.010. Epub 2018 Aug 2.
4
CMOS low current measurement system for biomedical applications.用于生物医学应用的 CMOS 低电流测量系统。
IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):111-9. doi: 10.1109/TBCAS.2011.2182512.
9
Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.小波降噪的高带宽纳米孔和离子通道信号。
Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.

引用本文的文献

1
Engineering Biological Nanopore Approaches toward Protein Sequencing.工程生物纳米孔方法进行蛋白质测序。
ACS Nano. 2023 Sep 12;17(17):16369-16395. doi: 10.1021/acsnano.3c05628. Epub 2023 Jul 25.
4
Stochastic Ionic Transport in Single Atomic Zero-Dimensional Pores.单原子零维孔道中的随机离子传输。
ACS Nano. 2020 Sep 22;14(9):11831-11845. doi: 10.1021/acsnano.0c04716. Epub 2020 Aug 31.
6
Comparing Current Noise in Biological and Solid-State Nanopores.比较生物纳米孔和固态纳米孔中的电流噪声。
ACS Nano. 2020 Feb 25;14(2):1338-1349. doi: 10.1021/acsnano.9b09353. Epub 2020 Feb 17.
9
Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.小波降噪的高带宽纳米孔和离子通道信号。
Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.

本文引用的文献

3
Structures of the colossal RyR1 calcium release channel.巨大的兰尼碱受体1型钙释放通道的结构
Curr Opin Struct Biol. 2016 Aug;39:144-152. doi: 10.1016/j.sbi.2016.09.002. Epub 2016 Sep 27.
4
Basic Signaling in Cardiac Fibroblasts.心脏成纤维细胞中的基本信号传导
J Cell Physiol. 2017 Apr;232(4):725-730. doi: 10.1002/jcp.25624. Epub 2016 Oct 12.
7
What do we not know about mitochondrial potassium channels?关于线粒体钾通道我们还不知道什么?
Biochim Biophys Acta. 2016 Aug;1857(8):1247-1257. doi: 10.1016/j.bbabio.2016.03.007. Epub 2016 Mar 4.
9
10
Structure of a mammalian ryanodine receptor.哺乳动物兰尼碱受体的结构。
Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验