Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.
Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States.
Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.
Recent work has pushed the noise-limited bandwidths of solid-state nanopore conductance recordings to more than 5 MHz and of ion channel conductance recordings to more than 500 kHz through the use of integrated complementary metal-oxide-semiconductor (CMOS) integrated circuits. Despite the spectral spread of the pulse-like signals that characterize these recordings when a sinusoidal basis is employed, Bessel filters are commonly used to denoise these signals to acceptable signal-to-noise ratios (SNRs) at the cost of losing many of the faster temporal features. Here, we report improvements to the SNR that can be achieved using wavelet denoising instead of Bessel filtering. When combined with state-of-the-art high-bandwidth CMOS recording instrumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important insights into nanopore translocation dynamics and mechanisms of ion-channel function.
最近的工作通过使用集成互补金属氧化物半导体(CMOS)集成电路,将固态纳米孔电导记录的噪声限制带宽推至超过 5 MHz,将离子通道电导记录的噪声限制带宽推至超过 500 kHz。尽管在采用正弦基准时,这些记录的脉冲信号具有频谱扩展,但贝塞尔滤波器常用于对这些信号进行去噪,以达到可接受的信噪比(SNR),但这是以丢失许多更快的时间特征为代价的。在这里,我们报告了使用小波去噪而不是贝塞尔滤波可以实现的 SNR 改进。当与最先进的高带宽 CMOS 记录仪器结合使用时,与 2.5 MHz 的贝塞尔滤波器相比,我们可以将基线噪声水平降低超过 4 倍,同时保留信号的瞬态特性,与该滤波器带宽相当。同样,对于离子通道记录,我们实现了优于 100 kHz 贝塞尔滤波器的时间响应,其噪声水平与 25 kHz 贝塞尔滤波器相当。SNR 的提高可用于对这些记录进行稳健的统计分析,这可能为纳米孔迁移动力学和离子通道功能机制提供重要的见解。