Suppr超能文献

小波降噪的高带宽纳米孔和离子通道信号。

Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.

机构信息

Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.

Department of Physiology and Cellular Biophysics , Columbia University , New York , New York 10032 , United States.

出版信息

Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.

Abstract

Recent work has pushed the noise-limited bandwidths of solid-state nanopore conductance recordings to more than 5 MHz and of ion channel conductance recordings to more than 500 kHz through the use of integrated complementary metal-oxide-semiconductor (CMOS) integrated circuits. Despite the spectral spread of the pulse-like signals that characterize these recordings when a sinusoidal basis is employed, Bessel filters are commonly used to denoise these signals to acceptable signal-to-noise ratios (SNRs) at the cost of losing many of the faster temporal features. Here, we report improvements to the SNR that can be achieved using wavelet denoising instead of Bessel filtering. When combined with state-of-the-art high-bandwidth CMOS recording instrumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important insights into nanopore translocation dynamics and mechanisms of ion-channel function.

摘要

最近的工作通过使用集成互补金属氧化物半导体(CMOS)集成电路,将固态纳米孔电导记录的噪声限制带宽推至超过 5 MHz,将离子通道电导记录的噪声限制带宽推至超过 500 kHz。尽管在采用正弦基准时,这些记录的脉冲信号具有频谱扩展,但贝塞尔滤波器常用于对这些信号进行去噪,以达到可接受的信噪比(SNR),但这是以丢失许多更快的时间特征为代价的。在这里,我们报告了使用小波去噪而不是贝塞尔滤波可以实现的 SNR 改进。当与最先进的高带宽 CMOS 记录仪器结合使用时,与 2.5 MHz 的贝塞尔滤波器相比,我们可以将基线噪声水平降低超过 4 倍,同时保留信号的瞬态特性,与该滤波器带宽相当。同样,对于离子通道记录,我们实现了优于 100 kHz 贝塞尔滤波器的时间响应,其噪声水平与 25 kHz 贝塞尔滤波器相当。SNR 的提高可用于对这些记录进行稳健的统计分析,这可能为纳米孔迁移动力学和离子通道功能机制提供重要的见解。

相似文献

1
Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.小波降噪的高带宽纳米孔和离子通道信号。
Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.
4
Temporal resolution of nanopore sensor recordings.纳米孔传感器记录的时间分辨率。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4110-3. doi: 10.1109/EMBC.2013.6610449.
8
Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.在 0.5μm CMOS 代工厂工艺中集成固态纳米孔。
Nanotechnology. 2013 Apr 19;24(15):155501. doi: 10.1088/0957-4484/24/15/155501. Epub 2013 Mar 22.
10
A new modified wavelet-based ECG denoising.一种新的基于改进小波的心电图去噪方法。
Comput Assist Surg (Abingdon). 2019 Oct;24(sup1):174-183. doi: 10.1080/24699322.2018.1560088. Epub 2019 Jan 28.

引用本文的文献

1
Enhanced Discriminability of Viral Vectors in Viscous Nanopores.粘性纳米孔中病毒载体的鉴别能力增强
Small Methods. 2025 Jul;9(7):e2401321. doi: 10.1002/smtd.202401321. Epub 2025 Jan 2.
5
Rational ion transport management mediated through membrane structures.通过膜结构介导的合理离子转运管理
Exploration (Beijing). 2021 Oct 30;1(2):20210101. doi: 10.1002/EXP.20210101. eCollection 2021 Oct.
7
Nanopore Detection Using Supercharged Polypeptide Molecular Carriers.利用超荷多肽分子载体进行纳米孔检测。
J Am Chem Soc. 2023 Mar 22;145(11):6371-6382. doi: 10.1021/jacs.2c13465. Epub 2023 Mar 10.
9
A Guide to Signal Processing Algorithms for Nanopore Sensors.纳米孔传感器信号处理算法指南。
ACS Sens. 2021 Oct 22;6(10):3536-3555. doi: 10.1021/acssensors.1c01618. Epub 2021 Oct 4.
10
Stochastic Ionic Transport in Single Atomic Zero-Dimensional Pores.单原子零维孔道中的随机离子传输。
ACS Nano. 2020 Sep 22;14(9):11831-11845. doi: 10.1021/acsnano.0c04716. Epub 2020 Aug 31.

本文引用的文献

7
Three decades of nanopore sequencing.纳米孔测序的三十年。
Nat Biotechnol. 2016 May 6;34(5):518-24. doi: 10.1038/nbt.3423.
8
Studies of RNA Sequence and Structure Using Nanopores.利用纳米孔进行RNA序列和结构研究。
Prog Mol Biol Transl Sci. 2016;139:73-99. doi: 10.1016/bs.pmbts.2015.10.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验