Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, W2 1PG, UK.
Syst Biol. 2018 Jul 1;67(4):719-728. doi: 10.1093/sysbio/syy007.
Nonparametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that nonparametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history. We propose a nonparametric autoregressive model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical data are sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-level prescription rates of $\beta$-lactam antibiotics. The new models are implemented in an open source R package called skygrowth which is available at https://github.com/mrc-ide/skygrowth.
非参数群体遗传学模型为使用病原体序列数据研究人口历史和流行动态提供了一种简单灵活的方法。现有的贝叶斯方法基于具有固定增量的随机过程,这可能为具有扩展的指数增长或下降期的流行病史提供不现实的先验。我们表明,根据有效种群大小增长率定义的非参数模型可以为流行病史提供更现实的先验。我们提出了一种基于有效种群大小增长率的非参数自回归模型作为先验,这与许多流行情况下预期的动力学相对应。我们在贝叶斯系统发育推断框架内展示了该模型的使用。即使在系统发育数据稀疏且常规的天际线估计器错误地预测稳定的种群大小的情况下,我们的方法也可以正确地从病原体系统发育中重建流行的增长和下降趋势。我们还提出了一种回归方法,用于将病原体有效种群大小的增长率与可能影响病原体复制适应性的时变变量相关联。该模型应用于来自狂犬病病毒和金黄色葡萄球菌流行的实际数据。我们发现耐甲氧西林金黄色葡萄球菌谱系的估计增长率与人群中 $\beta$-内酰胺类抗生素的处方率之间存在密切对应关系。新模型在一个名为 skygrowth 的开源 R 包中实现,可在 https://github.com/mrc-ide/skygrowth 获得。