The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA.
Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China.
Cell Death Dis. 2018 Feb 12;9(2):208. doi: 10.1038/s41419-017-0201-6.
Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.
在精子发生的上皮周期中,生殖细胞的分化伴随着广泛的重构,以使支持生精细胞和发育中的精子穿过血睾屏障(BTB)和生精上皮的管腔侧室的 Sertoli 细胞-细胞和 Sertoli 细胞-精子界面适应。睾丸中独特的细胞连接是富含肌动蛋白的胞外特殊化(ES),在 Sertoli 细胞-细胞界面上称为基底 ES,在 Sertoli-精子界面上称为顶 ES。由于 ES 动力学(即解组装、重新组装和稳定)由肌动蛋白微丝支持,肌动蛋白微丝可以快速在其成束和不成束/分支的构象之间转换,从而使 ES 具有可塑性,因此可以合理地推测肌动蛋白成核蛋白在 ES 动力学中发挥关键作用。在此,我们报道了发现,Spire 1 是一种肌动蛋白成核蛋白,已知其在细胞中将肌动蛋白聚合成长的线性微丝,是 ES 动力学的重要调节剂。在体外培养的 Sertoli 细胞中,通过 RNAi 敲低 Spire 1 发现会通过改变 Sertoli 细胞质溶胶中的 F-肌动蛋白的组织来阻碍 Sertoli 细胞紧密连接(TJ)-通透性屏障。出乎意料的是,Spire 1 敲低也扰乱了体外培养的 Sertoli 细胞中的微管(MT)组织。使用体外培养的 Sertoli 细胞进行的生化研究和特定的 F-肌动蛋白与 MT 聚合测定支持了这样的观点,即通过 RNAi 短暂丧失 Spire 1 会破坏 Sertoli 细胞肌动蛋白和 MT 聚合和捆绑活性。这些体外研究结果在体内研究中得到了复制,使用 Spire 1 特异性 siRNA 双链体通过 Polyplus 在体内喷射-PEI 作为转染培养基进行 RNAi,该培养基具有高效的转染效率。睾丸中的 Spire 1 敲低导致整个生精上皮中 F-肌动蛋白和 MT 组织的严重破坏,从而阻碍了精子和吞噬体穿过上皮的运输,并扰乱了精子发生。总之,Spire 1 是支持精子发生过程中生殖细胞发育的 ES 调节剂。