Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, India.
Nanoscale. 2018 Feb 22;10(8):3663-3672. doi: 10.1039/c7nr08164b.
Stabilization of the electroactive redox centers on ideally polarisable conductive electrodes is a critical challenge for realizing stable, high performing pseudocapacitive energy storage devices. Here, we report a top-down, electrochemical nanostructuring route based on voltammetric cycling to stabilize β-MnO on a single walled carbon nanotube (CNT) scaffold from a MnMoO precursor. Such in situ nanostructuring results in controlled disintegration of an ∼8 μm almond like structure to form ∼29 nm β-MnO resulting in a 59% increase in the specific surface area and a 31% increase in the porosity of the pseudocapacitive electrode. Consequently, the specific capacitance and areal capacitance increase by ∼75% and ∼40%, respectively. Such controlled, top-down nanostructuring is confirmed through binding energy changes to Mo 3d, C 1s, O 1s and Mn 2p respectively in XPS. Furthermore, Raman spectral mapping confirms the sequential nanostructuring initiating from the interface of CNTs with MnMoO and proceeding outwards. Thus, the process yields the final CNT/β-MnO electrode that is electrically conductive, facilitates rapid charge transfer, and has increased capacitance and longer stability. Furthermore, the charge-transfer resistance and equivalent resistance are significantly lower compared to conventional activated carbon based electrodes.
理想可极化导电电极上的电化学活性氧化还原中心的稳定化是实现稳定、高性能赝电容储能器件的关键挑战。在这里,我们报告了一种自上而下的电化学纳米结构化方法,该方法基于伏安循环,从 MnMoO 前体上将β-MnO 稳定在单壁碳纳米管(CNT)支架上。这种原位纳米结构化导致约 8μm 的杏仁状结构受控分解,形成约 29nm 的β-MnO,从而使赝电容电极的比表面积增加 59%,孔隙率增加 31%。因此,比电容和比面积电容分别增加了约 75%和 40%。XPS 中 Mo 3d、C 1s、O 1s 和 Mn 2p 的结合能变化分别证实了这种受控的自上而下的纳米结构化。此外,拉曼光谱映射证实了从 CNT 与 MnMoO 的界面开始并向外进行的顺序纳米结构化。因此,该过程产生了最终的 CNT/β-MnO 电极,该电极具有导电性、促进快速电荷转移、增加电容和更长的稳定性。此外,与传统的基于活性炭的电极相比,该电极的电荷转移电阻和等效电阻显著降低。