Suppr超能文献

通过氧化石墨烯和碳纳米管改善聚吡咯涂层的电化学性能

Improving Electrochemical Properties of Polypyrrole Coatings by Graphene Oxide and Carbon Nanotubes.

作者信息

Rosas-Laverde Nelly Maria, Pruna Alina, Busquets-Mataix David

机构信息

Department of Materials and Mechanical Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.

Department of Materials, Escuela Politécnica Nacional, Quito 170517, Ecuador.

出版信息

Nanomaterials (Basel). 2020 Mar 11;10(3):507. doi: 10.3390/nano10030507.

Abstract

Nanostructured polypyrrole coating was applied on carbon paper via simple dip-coating and electrochemical approach. Hybridization with nanocarbon materials (graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs)) and their effect as an anchoring hybrid layer for the growth of polypyrrole towards improving electrochemical properties are studied. The loading of each component and their ratio were evaluated. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and Raman spectroscopy were employed to characterize the properties of the coatings. The electrochemical properties were investigated by cyclic voltammetry. The results indicated the electrodeposition of polypyrrole is enhanced by the addition of MWCNTs to the GO layer due to the formation of a hierarchical network. The electrochemical performance of the modified electrode was shown to be highly dependent on the employed ratio, reaching a capacitance value of about 40 mF cm for a carbon paper substrate modified with GO:MWCNT in a ratio of 1:2.5 and PPy layer deposited by cyclic voltammetry for 30 cycles. The contribution to total stored charge was found to be primary from the inner capacitance component of about 95.5% contribution.

摘要

通过简单的浸涂和电化学方法将纳米结构的聚吡咯涂层应用于碳纸上。研究了与纳米碳材料(氧化石墨烯(GO)和多壁碳纳米管(MWCNTs))的杂化及其作为聚吡咯生长的锚固杂化层对改善电化学性能的影响。评估了每种组分的负载量及其比例。采用傅里叶变换红外光谱、场发射扫描电子显微镜和拉曼光谱对涂层的性能进行了表征。通过循环伏安法研究了电化学性能。结果表明,由于形成了分层网络,向GO层中添加MWCNTs可增强聚吡咯的电沉积。修饰电极的电化学性能高度依赖于所采用的比例,对于以1:2.5的比例用GO:MWCNT修饰且通过循环伏安法沉积30个循环的聚吡咯层的碳纸基底,电容值达到约40 mF/cm²。发现对总存储电荷的贡献主要来自约95.5%贡献的内部电容成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad73/7153482/22b951206e30/nanomaterials-10-00507-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验