Suppr超能文献

深度递归神经网络揭示了动态自然视觉过程记忆的层次结构。

Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 47906.

Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, 47906.

出版信息

Hum Brain Mapp. 2018 May;39(5):2269-2282. doi: 10.1002/hbm.24006. Epub 2018 Feb 12.

Abstract

The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision.

摘要

人类视觉皮层提取空间和时间视觉特征,以支持感知并指导行为。深度卷积神经网络 (CNN) 为空间视觉处理提供了一种计算框架来模拟皮质表示和组织,但无法解释大脑如何处理时间信息。为了克服这一限制,我们通过向 CNN 的不同层添加递归连接来扩展 CNN,以允许空间表示随时间被记住和积累。扩展模型或递归神经网络 (RNN) 将作为视觉处理的一个组成部分的过程记忆的分层和分布式模型具体化。与 CNN 不同,RNN 从视频中学习时空特征,以实现动作识别。RNN 在所有视觉区域(尤其是沿背侧流的区域)的自然电影刺激的皮质反应预测上优于 CNN。作为视觉处理的全可观测模型,RNN 还揭示了皮质时间感受野、过程记忆的动力学和时空表示的层次结构。这些结果支持过程记忆的假设,并证明了使用 RNN 对动态自然视觉进行深入计算理解的潜力。

相似文献

1
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Hum Brain Mapp. 2018 May;39(5):2269-2282. doi: 10.1002/hbm.24006. Epub 2018 Feb 12.
2
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
Cereb Cortex. 2018 Dec 1;28(12):4136-4160. doi: 10.1093/cercor/bhx268.
3
Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
J Neurosci. 2021 May 12;41(19):4234-4252. doi: 10.1523/JNEUROSCI.1993-20.2021. Epub 2021 Mar 31.
4
3-D vision and figure-ground separation by visual cortex.
Percept Psychophys. 1994 Jan;55(1):48-121. doi: 10.3758/bf03206880.
7
Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.
J Neurosci. 2015 Jul 8;35(27):10005-14. doi: 10.1523/JNEUROSCI.5023-14.2015.
8
Convolutional neural network-based encoding and decoding of visual object recognition in space and time.
Neuroimage. 2018 Oct 15;180(Pt A):253-266. doi: 10.1016/j.neuroimage.2017.07.018. Epub 2017 Jul 16.
9
Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
Neuroimage. 2018 Sep;178:385-402. doi: 10.1016/j.neuroimage.2018.05.042. Epub 2018 May 18.
10
Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
Neuroimage. 2019 Sep;198:125-136. doi: 10.1016/j.neuroimage.2019.05.039. Epub 2019 May 16.

引用本文的文献

1
Compression-enabled interpretability of voxelwise encoding models.
PLoS Comput Biol. 2025 Feb 19;21(2):e1012822. doi: 10.1371/journal.pcbi.1012822. eCollection 2025 Feb.
2
Architecture of the brain's visual system enhances network stability and performance through layers, delays, and feedback.
PLoS Comput Biol. 2023 Nov 10;19(11):e1011078. doi: 10.1371/journal.pcbi.1011078. eCollection 2023 Nov.
3
Convolutional neural networks for vision neuroscience: significance, developments, and outstanding issues.
Front Comput Neurosci. 2023 Jul 6;17:1153572. doi: 10.3389/fncom.2023.1153572. eCollection 2023.
6
Naturalistic Stimuli: A Paradigm for Multi-Scale Functional Characterization of the Human Brain.
Curr Opin Biomed Eng. 2021 Sep;19. doi: 10.1016/j.cobme.2021.100298. Epub 2021 Jun 2.
7
Representation learning of resting state fMRI with variational autoencoder.
Neuroimage. 2021 Nov 1;241:118423. doi: 10.1016/j.neuroimage.2021.118423. Epub 2021 Jul 23.
8
9
Movies and narratives as naturalistic stimuli in neuroimaging.
Neuroimage. 2021 Jan 1;224:117445. doi: 10.1016/j.neuroimage.2020.117445. Epub 2020 Oct 12.
10
Constructing and Forgetting Temporal Context in the Human Cerebral Cortex.
Neuron. 2020 May 20;106(4):675-686.e11. doi: 10.1016/j.neuron.2020.02.013. Epub 2020 Mar 11.

本文引用的文献

1
Transferring and generalizing deep-learning-based neural encoding models across subjects.
Neuroimage. 2018 Aug 1;176:152-163. doi: 10.1016/j.neuroimage.2018.04.053. Epub 2018 Apr 27.
2
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
Cereb Cortex. 2018 Dec 1;28(12):4136-4160. doi: 10.1093/cercor/bhx268.
3
Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.
Annu Rev Vis Sci. 2015 Nov 24;1:417-446. doi: 10.1146/annurev-vision-082114-035447.
4
Generic decoding of seen and imagined objects using hierarchical visual features.
Nat Commun. 2017 May 22;8:15037. doi: 10.1038/ncomms15037.
6
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks.
Front Comput Neurosci. 2017 Feb 9;11:7. doi: 10.3389/fncom.2017.00007. eCollection 2017.
7
Seeing it all: Convolutional network layers map the function of the human visual system.
Neuroimage. 2017 May 15;152:184-194. doi: 10.1016/j.neuroimage.2016.10.001. Epub 2016 Oct 21.
8
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.
9
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
10
LSTM: A Search Space Odyssey.
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2222-2232. doi: 10.1109/TNNLS.2016.2582924. Epub 2016 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验