School of Electrical and Computer Engineering, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47906, USA.
Weldon School of Biomedical Engineering, USA; School of Electrical and Computer Engineering, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47906, USA.
Neuroimage. 2019 Sep;198:125-136. doi: 10.1016/j.neuroimage.2019.05.039. Epub 2019 May 16.
Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.
基于目标和前馈的卷积神经网络(CNN)已被证明能够预测和解码皮质对自然图像或视频的反应。在这里,我们探索了一种替代的深度神经网络,变分自编码器(VAE),作为视觉皮质的计算模型。我们用一个五层层编码器和一个五层层解码器训练一个 VAE,从一组不同的无标签图像中学习视觉表示。使用训练好的 VAE,我们预测并解码了三个被动观看自然视频的人类被试的功能磁共振成像(fMRI)观察到的皮质活动。与 CNN 相比,VAE 可以在早期视觉区域以相当的准确性预测视频诱发的皮质反应,但在更高阶的视觉区域的准确性相对较低。VAE 和 CNN 在编码性能上的区别主要归因于它们不同的学习目标,而不是它们不同的模型结构或参数数量。尽管编码精度较低,但 VAE 提供了一种更方便的策略来解码 fMRI 活动以重建视频输入,首先将 fMRI 活动转换为 VAE 的潜在变量,然后通过 VAE 的解码器将潜在变量转换为重建的视频帧。与替代的解码方法(例如偏最小二乘回归)相比,这种策略更有利于重建视觉输入的空间结构和颜色。这些发现突出了 VAE 作为学习视觉表示的无监督模型的作用,以及它在解释皮质反应和重建自然和多样化的视觉体验方面的潜力和局限性。