Suppr超能文献

对光合系统组成和电子传递蛋白的调整是蓝藻 UTEX 2973 惊人生长速度的关键。

Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium UTEX 2973.

机构信息

Department of Biology, Washington University, St. Louis, Missouri, USA.

Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri, USA.

出版信息

mBio. 2018 Feb 6;9(1):e02327-17. doi: 10.1128/mBio.02327-17.

Abstract

At the genome level, UTEX 2973 ( 2973) is nearly identical to the model cyanobacterium PCC 7942 ( 7942) with only 55 single nucleotide differences separating the two strains. Despite the high similarity between the two strains, 2973 grows three times faster, accumulates significantly more glycogen, is tolerant to extremely high light intensities, and displays higher photosynthetic rates. The high homology between the two strains provides a unique opportunity to examine the factors that lead to increased photosynthetic rates. We compared the photophysiology of the two strains and determined the differences in 2973 that lead to increased photosynthetic rates and the concomitant increase in biomass production. In this study, we identified inefficiencies in the electron transport chain of 7942 that have been alleviated in 2973. Photosystem II (PSII) capacity is the same in both strains. However, 2973 exhibits a 1.6-fold increase in PSI content, a 1.5-fold increase in cytochrome content, and a 2.4-fold increase in plastocyanin content on a per cell basis. The increased content of electron carriers allows a higher flux of electrons through the photosynthetic electron transport chain, while the increased PSI content provides more oxidizing power to maintain upstream carriers ready to accept electrons. These changes serve to increase the photosynthetic efficiency of 2973, the fastest growing cyanobacterium known. As the global population increases, the amount of arable land continues to decrease. To prevent a looming food crisis, crop productivity per acre must increase. A promising target for improving crop productivity is increasing the photosynthetic rates in crop plants. Cyanobacteria serve as models for higher plant photosynthetic systems and are an important test bed for improvements in photosynthetic productivity. In this study, we identified key factors that lead to improved photosynthetic efficiency and increased production of biomass of a cyanobacterium. We suggest that the findings presented herein will give direction to improvements that may be made in other photosynthetic organisms to improve photosynthetic efficiency.

摘要

在基因组水平上,UTEX 2973(2973)与模式蓝藻 PCC 7942(7942)几乎完全相同,两株菌只有 55 个单核苷酸差异。尽管两株菌高度相似,但 2973 的生长速度快三倍,积累的糖原显著增加,对极高的光强具有耐受性,并且表现出更高的光合速率。两株菌之间的高度同源性为研究导致光合速率增加的因素提供了独特的机会。我们比较了两株菌的光合生理学特性,并确定了导致 2973 光合速率增加和生物量产量增加的差异。在这项研究中,我们确定了 7942 电子传递链中的低效性,这些低效性在 2973 中得到了缓解。两个菌株的光系统 II(PSII)容量相同。然而,2973 的 PSI 含量增加了 1.6 倍,细胞色素含量增加了 1.5 倍,质体蓝素含量增加了 2.4 倍。电子载体含量的增加允许电子在光合作用电子传递链中以更高的通量流动,而 PSI 含量的增加提供了更多的氧化能力来维持上游载体准备接受电子。这些变化提高了光合效率最快的蓝藻 2973 的光合作用效率。随着全球人口的增加,可耕地面积继续减少。为了防止即将出现的粮食危机,每英亩的作物生产力必须提高。提高作物生产力的一个有前途的目标是提高作物植物的光合速率。蓝藻是高等植物光合作用系统的模型,是提高光合生产力的重要试验台。在这项研究中,我们确定了导致光合效率提高和蓝藻生物量增加的关键因素。我们建议,本文提出的发现将为提高其他光合生物的光合效率提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90a7/5801466/f9dd5063b86f/mbo0011837030001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验