Suppr超能文献

比较基因组学揭示了蓝藻 UTEX 2973 快速生长的分子决定因素。

Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium UTEX 2973.

机构信息

Department of Biology, Washington University in St. Louis, St. Louis, MO 63130.

Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802.

出版信息

Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11761-E11770. doi: 10.1073/pnas.1814912115. Epub 2018 Nov 8.

Abstract

Cyanobacteria are emerging as attractive organisms for sustainable bioproduction. We previously described UTEX 2973 as the fastest growing cyanobacterium known. 2973 exhibits high light tolerance and an increased photosynthetic rate and produces biomass at three times the rate of its close relative, the model strain 7942. The two strains differ at 55 genetic loci, and ome of these loci must contain the genetic determinants of rapid photoautotrophic growth and improved photosynthetic rate. Using CRISPR/Cpf1, we performed a comprehensive mutational analysis of 2973 and identified three specific genes, , , and , with SNPs that confer rapid growth. The fast-growth-associated allele of each gene was then used to replace the wild-type alleles in 7942. Upon incorporation, each allele successively increased the growth rate of 7942; remarkably, inclusion of all three alleles drastically reduced the doubling time from 6.8 to 2.3 hours. Further analysis revealed that our engineering effort doubled the photosynthetic productivity of 7942. We also determined that the fast-growth-associated allele of yielded an ATP synthase with higher specific activity, while that of encoded a NAD kinase with significantly improved kinetics. The SNPs cause broad changes in the transcriptional profile, as this gene is the master output regulator of the circadian clock. This pioneering study has revealed the molecular basis for rapid growth, demonstrating that limited genetic changes can dramatically improve the growth rate of a microbe by as much as threefold.

摘要

蓝藻作为可持续生物生产的有吸引力的生物而崭露头角。我们之前曾描述过 UTEX 2973 是已知生长最快的蓝藻。2973 表现出对高光的耐受性,光合速率提高,其生物量的产生速度是近亲模式菌株 7942 的三倍。这两个菌株在 55 个遗传基因座上存在差异,其中一些基因座一定包含快速光自养生长和提高光合速率的遗传决定因素。我们使用 CRISPR/Cpf1 对 2973 进行了全面的突变分析,鉴定出三个具有 SNP 的特定基因 、 、 和 ,这些 SNP 赋予了快速生长的能力。然后,每个基因的快速生长相关等位基因被用来替换 7942 中的野生型等位基因。在整合后,每个等位基因都相继提高了 7942 的生长速度;值得注意的是,包含所有三个等位基因使倍增时间从 6.8 小时急剧缩短到 2.3 小时。进一步的分析表明,我们的工程努力使 7942 的光合生产力提高了一倍。我们还确定, 快速生长相关等位基因的 ATP 合酶具有更高的比活性,而 编码的 NAD 激酶具有显著改善的动力学特性。 基因的快速生长相关等位基因导致转录谱发生广泛变化,因为该基因是生物钟的主输出调节剂。这项开创性的研究揭示了快速生长的分子基础,表明有限的遗传变化可以使微生物的生长速度提高三倍。

相似文献

1
Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium UTEX 2973.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11761-E11770. doi: 10.1073/pnas.1814912115. Epub 2018 Nov 8.
3
Engineering Natural Competence into the Fast-Growing Cyanobacterium Strain UTEX 2973.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0188221. doi: 10.1128/AEM.01882-21. Epub 2021 Oct 27.
5
Comparative Genomics of Synechococcus elongatus Explains the Phenotypic Diversity of the Strains.
mBio. 2022 Jun 28;13(3):e0086222. doi: 10.1128/mbio.00862-22. Epub 2022 Apr 27.
10
A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium.
Microbiol Spectr. 2022 Aug 31;10(4):e0100822. doi: 10.1128/spectrum.01008-22. Epub 2022 Jun 21.

引用本文的文献

1
Enhancing photosynthesis under salt stress via directed evolution in cyanobacteria.
Plant Physiol. 2025 May 30;198(2). doi: 10.1093/plphys/kiaf209.
2
Cyanobacteria newly isolated from marine volcanic seeps display rapid sinking and robust, high-density growth.
Appl Environ Microbiol. 2024 Nov 20;90(11):e0084124. doi: 10.1128/aem.00841-24. Epub 2024 Oct 29.
4
A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901.
Plant Physiol. 2024 Oct 1;196(2):1674-1690. doi: 10.1093/plphys/kiae261.
5
Impact of irradiance and inorganic carbon availability on heterologous sucrose production in PCC 7942.
Front Plant Sci. 2024 Apr 8;15:1378573. doi: 10.3389/fpls.2024.1378573. eCollection 2024.
6
Advances in light system engineering across the phototrophic spectrum.
Front Plant Sci. 2024 Feb 12;15:1332456. doi: 10.3389/fpls.2024.1332456. eCollection 2024.
7
UV-A radiation increases biomass yield by enhancing energy flow and carbon assimilation in the edible cyanobacterium .
Appl Environ Microbiol. 2024 Mar 20;90(3):e0211023. doi: 10.1128/aem.02110-23. Epub 2024 Feb 23.
8
Potential of UTEX 2973 as a feedstock for sugar production during mixed aquaculture and swine wastewater bioremediation.
Heliyon. 2024 Jan 18;10(3):e24646. doi: 10.1016/j.heliyon.2024.e24646. eCollection 2024 Feb 15.
9
Culture-free identification of fast-growing cyanobacteria cells by Raman-activated gravity-driven encapsulation and sequencing.
Synth Syst Biotechnol. 2023 Nov 11;8(4):708-715. doi: 10.1016/j.synbio.2023.11.001. eCollection 2023 Dec.
10
Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease.
Front Pharmacol. 2023 Oct 19;14:1249632. doi: 10.3389/fphar.2023.1249632. eCollection 2023.

本文引用的文献

2
Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis.
Biotechnol Biofuels. 2017 Nov 16;10:273. doi: 10.1186/s13068-017-0958-y. eCollection 2017.
3
Cyanobacteria: Promising biocatalysts for sustainable chemical production.
J Biol Chem. 2018 Apr 6;293(14):5044-5052. doi: 10.1074/jbc.R117.815886. Epub 2017 Oct 2.
6
Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E580-E589. doi: 10.1073/pnas.1613078114. Epub 2017 Jan 10.
8
Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production.
Metabolites. 2015 Oct 27;5(4):636-58. doi: 10.3390/metabo5040636.
9
Redesigning photosynthesis to sustainably meet global food and bioenergy demand.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36. doi: 10.1073/pnas.1424031112. Epub 2015 Jun 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验