Suppr超能文献

非线性回归提高了多重质谱分析检测特征描述的准确性。

Nonlinear Regression Improves Accuracy of Characterization of Multiplexed Mass Spectrometric Assays.

机构信息

From the ‡College of Science, Northeastern University, Boston, Massachusetts 02115.

§Department of Genome Sciences, University of Washington, Seattle, Washington 98195.

出版信息

Mol Cell Proteomics. 2018 May;17(5):913-924. doi: 10.1074/mcp.RA117.000322. Epub 2018 Feb 9.

Abstract

The need for assay characterization is ubiquitous in quantitative mass spectrometry-based proteomics. Among many assay characteristics, the limit of blank (LOB) and limit of detection (LOD) are two particularly useful figures of merit. LOB and LOD are determined by repeatedly quantifying the observed intensities of peptides in samples with known peptide concentrations and deriving an intensity concentration response curve. Most commonly, a weighted linear or logistic curve is fit to the intensity-concentration response, and LOB and LOD are estimated from the fit. Here we argue that these methods inaccurately characterize assays where observed intensities level off at low concentrations, which is a common situation in multiplexed systems. This manuscript illustrates the deficiencies of these methods, and proposes an alternative approach based on nonlinear regression that overcomes these inaccuracies. We evaluated the performance of the proposed method using computer simulations and using eleven experimental data sets acquired in Data-Independent Acquisition (DIA), Parallel Reaction Monitoring (PRM), and Selected Reaction Monitoring (SRM) mode. When the intensity levels off at low concentrations, the nonlinear model changes the estimates of LOB/LOD upwards, in some data sets by 20-40%. In absence of a low concentration intensity leveling off, the estimates of LOB/LOD obtained with nonlinear statistical modeling were identical to those of weighted linear regression. We implemented the nonlinear regression approach in the open-source R-based software MSstats, and advocate its general use for characterization of mass spectrometry-based assays.

摘要

在基于定量质谱的蛋白质组学中,需要对分析物进行特征描述。在许多分析物特性中,空白限(LOB)和检测限(LOD)是两个特别有用的度量标准。LOB 和 LOD 通过反复测量具有已知肽浓度的样品中观察到的肽的强度,并得出强度-浓度响应曲线来确定。最常见的是,对强度-浓度响应进行加权线性或逻辑曲线拟合,然后从拟合中估计 LOB 和 LOD。在这里,我们认为这些方法不能准确地描述在低浓度下观察到的强度趋于平稳的分析物,这在多路复用系统中是常见的情况。本文说明了这些方法的缺陷,并提出了一种基于非线性回归的替代方法,克服了这些不准确之处。我们使用计算机模拟和 11 个在 Data-Independent Acquisition (DIA)、Parallel Reaction Monitoring (PRM) 和 Selected Reaction Monitoring (SRM) 模式下采集的实验数据集评估了所提出方法的性能。当强度在低浓度下趋于平稳时,非线性模型将 LOB/LOD 的估计值向上移动,在某些数据集中移动 20-40%。在没有低浓度强度趋于平稳的情况下,使用非线性统计建模获得的 LOB/LOD 估计值与加权线性回归的估计值相同。我们在基于开源 R 的软件 MSstats 中实现了非线性回归方法,并提倡其在基于质谱的分析物特征描述中的广泛应用。

相似文献

3
Partly nonparametric approach for determining the limit of detection.用于确定检测限的部分非参数方法。
Clin Chem. 2004 Apr;50(4):732-40. doi: 10.1373/clinchem.2003.029983. Epub 2004 Feb 5.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验