Suppr超能文献

基于贝叶斯多表型模型提高 SNP 遗传力的估计。

Improved estimation of SNP heritability using Bayesian multiple-phenotype models.

机构信息

Department of Medical and Molecular Genetics, King's College London, London, England.

Department of Statistics, London School of Economics and Political Science, London, England.

出版信息

Eur J Hum Genet. 2018 May;26(5):723-734. doi: 10.1038/s41431-018-0100-z. Epub 2018 Feb 13.

Abstract

Linear mixed models (LMM) are widely used to estimate narrow sense heritability explained by tagged single-nucleotide polymorphisms (SNPs). However, those estimates are valid only if large sample sizes are used. We propose a Bayesian covariance component model (BCCM) that takes into account the genetic correlation among phenotypes and genetic correlation among individuals. The use of the BCCM allows us to circumvent issues related to small sample sizes, including overfitting and boundary estimates. Using expression of genes in breast cancer pathway, obtained from the Multiple Tissue Human Expression Resource (MuTHER) project, we demonstrate a significant improvement in the accuracy of SNP-based heritability estimates over univariate and likelihood-based methods. According to the BCCM, except CHURC1 (h = 0.27, credible interval = (0.2, 0.36)), all tested genes have trivial heritability estimates, thus explaining why recent progress in their eQTL identification has been limited.

摘要

线性混合模型(LMM)广泛用于估计由标记单核苷酸多态性(SNP)解释的狭义遗传率。然而,只有使用大样本量时,这些估计才有效。我们提出了一种贝叶斯协方差分量模型(BCCM),该模型考虑了表型之间的遗传相关性和个体之间的遗传相关性。使用 BCCM 可以避免与小样本量相关的问题,包括过度拟合和边界估计。使用来自多组织人类表达资源(MuTHER)项目的乳腺癌途径中的基因表达数据,我们证明了基于 SNP 的遗传率估计在准确性上优于单变量和似然方法。根据 BCCM,除了 CHURC1(h=0.27,置信区间=(0.2,0.36))之外,所有测试的基因都具有微不足道的遗传率估计,这解释了为什么最近在它们的 eQTL 鉴定方面进展有限。

相似文献

1
Improved estimation of SNP heritability using Bayesian multiple-phenotype models.
Eur J Hum Genet. 2018 May;26(5):723-734. doi: 10.1038/s41431-018-0100-z. Epub 2018 Feb 13.
2
SNP-based heritability estimation using a Bayesian approach.
Animal. 2013 Apr;7(4):531-9. doi: 10.1017/S1751731112002017. Epub 2012 Nov 23.
4
Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model.
PLoS Genet. 2015 Apr 7;11(4):e1004969. doi: 10.1371/journal.pgen.1004969. eCollection 2015 Apr.
5
Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis.
Math Biosci Eng. 2019 Sep 26;17(1):122-143. doi: 10.3934/mbe.2020007.
6
Concepts, estimation and interpretation of SNP-based heritability.
Nat Genet. 2017 Aug 30;49(9):1304-1310. doi: 10.1038/ng.3941.
7
Using Stochastic Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability.
J Comput Biol. 2018 Jul;25(7):794-808. doi: 10.1089/cmb.2018.0047. Epub 2018 Jun 22.
8
Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits.
Nat Genet. 2018 May;50(5):737-745. doi: 10.1038/s41588-018-0108-x. Epub 2018 Apr 26.
9
An efficient unified model for genome-wide association studies and genomic selection.
Genet Sel Evol. 2017 Aug 24;49(1):64. doi: 10.1186/s12711-017-0338-x.

引用本文的文献

1
Genetic variations of DNA bindings of FOXA1 and co-factors in breast cancer susceptibility.
Nat Commun. 2021 Sep 13;12(1):5318. doi: 10.1038/s41467-021-25670-9.

本文引用的文献

2
Heritability and genomics of gene expression in peripheral blood.
Nat Genet. 2014 May;46(5):430-7. doi: 10.1038/ng.2951. Epub 2014 Apr 13.
3
Quantifying the uncertainty in heritability.
J Hum Genet. 2014 May;59(5):269-75. doi: 10.1038/jhg.2014.15. Epub 2014 Mar 27.
4
Efficient multivariate linear mixed model algorithms for genome-wide association studies.
Nat Methods. 2014 Apr;11(4):407-9. doi: 10.1038/nmeth.2848. Epub 2014 Feb 16.
5
Advantages and pitfalls in the application of mixed-model association methods.
Nat Genet. 2014 Feb;46(2):100-6. doi: 10.1038/ng.2876.
6
A nondegenerate penalized likelihood estimator for variance parameters in multilevel models.
Psychometrika. 2013 Oct;78(4):685-709. doi: 10.1007/s11336-013-9328-2. Epub 2013 Mar 12.
7
The advantages and limitations of trait analysis with GWAS: a review.
Plant Methods. 2013 Jul 22;9:29. doi: 10.1186/1746-4811-9-29. eCollection 2013.
8
Improving the accuracy and efficiency of partitioning heritability into the contributions of genomic regions.
Am J Hum Genet. 2013 Apr 4;92(4):558-64. doi: 10.1016/j.ajhg.2013.03.010.
9
Polygenic modeling with bayesian sparse linear mixed models.
PLoS Genet. 2013;9(2):e1003264. doi: 10.1371/journal.pgen.1003264. Epub 2013 Feb 7.
10
The UK Adult Twin Registry (TwinsUK Resource).
Twin Res Hum Genet. 2013 Feb;16(1):144-9. doi: 10.1017/thg.2012.89. Epub 2012 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验