Suppr超能文献

提高划分基因组区域遗传贡献准确性和效率的方法。

Improving the accuracy and efficiency of partitioning heritability into the contributions of genomic regions.

机构信息

Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Am J Hum Genet. 2013 Apr 4;92(4):558-64. doi: 10.1016/j.ajhg.2013.03.010.

Abstract

Quantifying heritability, the amount of genetic contribution in a complex trait, has been of fundamental interest to geneticists for decades. Recently, partitioning the heritability accounted for by common variants into the contributions of genomic regions has received a lot of attention given its important applications for understanding the genetic architecture of complex traits. Current methods partition the total heritability by jointly estimating the contributions of all regions. However, these methods are computationally intractable and can be inaccurate when the number of regions is large. In this paper, we present an alternative approach that partitions the total heritability into the contributions of an arbitrary number of regions. We demonstrate by using simulations that our approach is more accurate and computationally efficient than current approaches. Using a data set from a genome-wide association study on human height, we demonstrate the utility of our method by estimating the heritability contributions of chromosomes and subchromosomal regions.

摘要

几十年来,量化遗传率(复杂性状中遗传贡献的程度)一直是遗传学家非常感兴趣的基本问题。最近,将常见变体解释的遗传率分配到基因组区域的贡献引起了很多关注,因为它对理解复杂性状的遗传结构具有重要的应用价值。目前的方法通过联合估计所有区域的贡献来划分总遗传率。然而,当区域数量很大时,这些方法在计算上是难以处理的,并且可能不准确。在本文中,我们提出了一种替代方法,可以将总遗传率划分为任意数量的区域的贡献。我们通过使用模拟证明了我们的方法比当前方法更准确和高效。使用来自人类身高全基因组关联研究的数据集,我们通过估计染色体和亚染色体区域的遗传率贡献来证明我们方法的实用性。

相似文献

1
Improving the accuracy and efficiency of partitioning heritability into the contributions of genomic regions.
Am J Hum Genet. 2013 Apr 4;92(4):558-64. doi: 10.1016/j.ajhg.2013.03.010.
3
Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture.
Nat Genet. 2019 Aug;51(8):1244-1251. doi: 10.1038/s41588-019-0465-0. Epub 2019 Jul 29.
4
Estimation and partition of heritability in human populations using whole-genome analysis methods.
Annu Rev Genet. 2013;47:75-95. doi: 10.1146/annurev-genet-111212-133258. Epub 2013 Aug 22.
5
Evaluation of heritability partitioning approaches in livestock populations.
BMC Genomics. 2024 Jul 13;25(1):690. doi: 10.1186/s12864-024-10600-y.
6
Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data.
Am J Hum Genet. 2016 Jul 7;99(1):139-53. doi: 10.1016/j.ajhg.2016.05.013. Epub 2016 Jun 23.
7
Accurate Genomic Prediction of Human Height.
Genetics. 2018 Oct;210(2):477-497. doi: 10.1534/genetics.118.301267. Epub 2018 Aug 27.
9
Fast and Accurate Construction of Confidence Intervals for Heritability.
Am J Hum Genet. 2016 Jun 2;98(6):1181-1192. doi: 10.1016/j.ajhg.2016.04.016.
10
Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans.
PLoS Genet. 2013;9(3):e1003355. doi: 10.1371/journal.pgen.1003355. Epub 2013 Mar 7.

引用本文的文献

2
Incorporating regulatory interactions into gene-set analyses for GWAS data: A controlled analysis with the MAGMA tool.
PLoS Comput Biol. 2022 Mar 22;18(3):e1009908. doi: 10.1371/journal.pcbi.1009908. eCollection 2022 Mar.
3
Efficient Signal Inclusion With Genomic Applications.
J Am Stat Assoc. 2019;114(528):1787-1799. doi: 10.1080/01621459.2018.1518236. Epub 2019 Feb 27.
4
Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis.
Cell Rep. 2019 Oct 1;29(1):202-211.e6. doi: 10.1016/j.celrep.2019.08.077.
5
Population structure in genetic studies: Confounding factors and mixed models.
PLoS Genet. 2018 Dec 27;14(12):e1007309. doi: 10.1371/journal.pgen.1007309. eCollection 2018 Dec.
6
Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow.
Evol Lett. 2018 Aug 7;2(4):297-309. doi: 10.1002/evl3.74. eCollection 2018 Aug.
7
A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.
Ann Appl Stat. 2017 Dec;11(4):2027-2051. doi: 10.1214/17-AOAS1052. Epub 2017 Dec 28.
8
Improved estimation of SNP heritability using Bayesian multiple-phenotype models.
Eur J Hum Genet. 2018 May;26(5):723-734. doi: 10.1038/s41431-018-0100-z. Epub 2018 Feb 13.
9
Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies.
PLoS Genet. 2018 Jan 29;14(1):e1007186. doi: 10.1371/journal.pgen.1007186. eCollection 2018 Jan.

本文引用的文献

1
Finding the sources of missing heritability in a yeast cross.
Nature. 2013 Feb 14;494(7436):234-7. doi: 10.1038/nature11867. Epub 2013 Feb 3.
2
The continuing value of twin studies in the omics era.
Nat Rev Genet. 2012 Sep;13(9):640-53. doi: 10.1038/nrg3243. Epub 2012 Jul 31.
3
Heritability in the genome-wide association era.
Hum Genet. 2012 Oct;131(10):1655-64. doi: 10.1007/s00439-012-1199-6. Epub 2012 Jul 21.
4
A genome-wide association study reveals loci influencing height and other conformation traits in horses.
PLoS One. 2012;7(5):e37282. doi: 10.1371/journal.pone.0037282. Epub 2012 May 16.
6
The mystery of missing heritability: Genetic interactions create phantom heritability.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1193-8. doi: 10.1073/pnas.1119675109. Epub 2012 Jan 5.
7
FaST linear mixed models for genome-wide association studies.
Nat Methods. 2011 Sep 4;8(10):833-5. doi: 10.1038/nmeth.1681.
8
Population structure can inflate SNP-based heritability estimates.
Am J Hum Genet. 2011 Jul 15;89(1):191-3; author reply 193-5. doi: 10.1016/j.ajhg.2011.05.025.
9
Genome partitioning of genetic variation for complex traits using common SNPs.
Nat Genet. 2011 Jun;43(6):519-25. doi: 10.1038/ng.823. Epub 2011 May 8.
10
GCTA: a tool for genome-wide complex trait analysis.
Am J Hum Genet. 2011 Jan 7;88(1):76-82. doi: 10.1016/j.ajhg.2010.11.011. Epub 2010 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验