Gebski Val, Garès Valérie, Gibbs Emma, Byth Karen
National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney 2006, NSW, Australia.
Int J Epidemiol. 2018 Jun 1;47(3):850-859. doi: 10.1093/ije/dyy013.
We propose methods to determine the minimum number of subjects remaining at risk after which Kaplan-Meier survival plots for time-to-event outcomes should be curtailed, as, once the number remaining at risk drops below this minimum, the survival estimates are no longer meaningful in the context of the investigation. The size of the decrease of the Kaplan-Meier survival estimate S(t) at time t if one extra event should occur is considered in two ways. In the first approach, the investigator sets a maximum acceptable absolute decrease in S(t) should one extra event occur. In the second, a minimum acceptable number of subjects still at risk is calculated by comparing the size of the decrease in S(t) if an extra event should occur with the variability of the survival estimate had all subjects been followed to that time (confidence interval approach). We recommend calculating both limits for the number still at risk and then making an informed choice in the context of the particular investigation. We explore further how the amount of information actually available can assist in considering issues of data maturity for studies whose outcome of interest is a survival percentage at a particular time point. We illustrate the approaches with a number of published studies having differing sample sizes and censoring issues. In particular, one study was the subject of some controversy regarding how far in time the Kaplan-Meier plot should be extended. The proposed methods allow for limits to be calculated simply using the output provided by most statistical packages.
我们提出了一些方法来确定事件发生时间结局的Kaplan-Meier生存曲线应截断时仍处于风险中的受试者的最小数量,因为一旦处于风险中的数量降至该最小值以下,在调查背景下生存估计就不再有意义。如果再发生一个事件,在时间t时Kaplan-Meier生存估计值S(t)的下降幅度可通过两种方式来考虑。在第一种方法中,研究者设定如果再发生一个事件,S(t)的最大可接受绝对下降幅度。在第二种方法中,通过比较如果再发生一个事件时S(t)的下降幅度与如果所有受试者都随访到该时间点时生存估计值的变异性(置信区间法)来计算仍处于风险中的受试者的最小可接受数量。我们建议计算仍处于风险中的数量的两个界限,然后在特定调查的背景下做出明智的选择。我们进一步探讨实际可用的信息量如何有助于考虑以特定时间点的生存百分比为感兴趣结局的研究的数据成熟度问题。我们用一些样本量和删失问题不同的已发表研究来说明这些方法。特别是,一项研究在Kaplan-Meier曲线应延伸到多长时间方面存在一些争议。所提出的方法允许简单地使用大多数统计软件包提供的输出结果来计算界限。