Suppr超能文献

广泛而精确的酵母蛋白质-基因组相互作用的重编程以响应热休克。

Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock.

机构信息

Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Genome Res. 2018 Mar 1;28(3):357-366. doi: 10.1101/gr.226761.117.

Abstract

Gene expression is controlled by a variety of proteins that interact with the genome. Their precise organization and mechanism of action at every promoter remains to be worked out. To better understand the physical interplay among genome-interacting proteins, we examined the temporal binding of a functionally diverse subset of these proteins: nucleosomes (H3), H2AZ (Htz1), SWR (Swr1), RSC (Rsc1, Rsc3, Rsc58, Rsc6, Rsc9, Sth1), SAGA (Spt3, Spt7, Ubp8, Sgf11), Hsf1, TFIID (Spt15/TBP and Taf1), TFIIB (Sua7), TFIIH (Ssl2), FACT (Spt16), Pol II (Rpb3), and Pol II carboxyl-terminal domain (CTD) phosphorylation at serines 2, 5, and 7. They were examined under normal and acute heat shock conditions, using the ultrahigh resolution genome-wide ChIP-exo assay in Our findings reveal a precise positional organization of proteins bound at most genes, some of which rapidly reorganize within minutes of heat shock. This includes more precise positional transitions of Pol II CTD phosphorylation along the 5' ends of genes than previously seen. Reorganization upon heat shock includes colocalization of SAGA with promoter-bound Hsf1, a change in RSC subunit enrichment from gene bodies to promoters, and Pol II accumulation within promoter/+1 nucleosome regions. Most of these events are widespread and not necessarily coupled to changes in gene expression. Together, these findings reveal protein-genome interactions that are robustly reprogrammed in precise and uniform ways far beyond what is elicited by changes in gene expression.

摘要

基因表达受多种与基因组相互作用的蛋白质控制。它们在每个启动子上的精确组织和作用机制仍有待研究。为了更好地了解基因组相互作用蛋白之间的物理相互作用,我们检查了这些蛋白质中功能不同的子集的暂时结合:核小体(H3)、H2AZ(Htz1)、SWR(Swr1)、RSC(Rsc1、Rsc3、Rsc58、Rsc6、Rsc9、Sth1)、SAGA(Spt3、Spt7、Ubp8、Sgf11)、Hsf1、TFIID(Spt15/TBP 和 Taf1)、TFIIB(Sua7)、TFIIH(Ssl2)、FACT(Spt16)、Pol II(Rpb3)和 Pol II 羧基末端结构域(CTD)在丝氨酸 2、5 和 7 上的磷酸化。在正常和急性热休克条件下,使用超高分辨率全基因组 ChIP-exo 测定法在酵母中检查了这些蛋白质。

我们的研究结果揭示了大多数基因上结合的蛋白质的精确位置组织,其中一些蛋白质在热休克后的几分钟内迅速重新组织。这包括 Pol II CTD 磷酸化在基因 5' 端的更精确位置转变,比以前看到的更为明显。热休克后的重新组织包括 SAGA 与启动子结合的 Hsf1 共定位、RSC 亚基从基因体到启动子的富集变化,以及 Pol II 在启动子/+1 核小体区域的积累。这些事件大多数是广泛的,不一定与基因表达的变化相关。总之,这些发现揭示了蛋白质-基因组相互作用,这些相互作用以精确和统一的方式被重新编程,远远超出了基因表达变化所引起的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5927/5848614/31532609a76b/357_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验