Chizhik Anna M, Wollnik Carina, Ruhlandt Daja, Karedla Narain, Chizhik Alexey I, Hauke Lara, Hähnel Dirk, Gregor Ingo, Enderlein Jörg, Rehfeldt Florian
Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany.
Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37077 Göttingen, Germany.
Mol Biol Cell. 2018 Apr 1;29(7):846-851. doi: 10.1091/mbc.E17-05-0314.
We report a novel method, dual-color axial nanometric localization by metal--induced energy transfer, and combine it with Förster resonance energy transfer (FRET) for resolving structural details in cells on the molecular level. We demonstrate the capability of this method on cytoskeletal elements and adhesions in human mesenchymal stem cells. Our approach is based on fluorescence-lifetime-imaging microscopy and allows for precise determination of the three-dimensional architecture of stress fibers anchoring at focal adhesions, thus yielding crucial information to understand cell-matrix mechanics. In addition to resolving nanometric structural details along the -axis, we use FRET to gain precise information on the distance between actin and vinculin at focal adhesions.
我们报告了一种新方法,即通过金属诱导能量转移实现双色轴向纳米级定位,并将其与荧光共振能量转移(FRET)相结合,以在分子水平上解析细胞中的结构细节。我们展示了该方法在人间充质干细胞的细胞骨架元件和黏附方面的能力。我们的方法基于荧光寿命成像显微镜,能够精确确定锚定在黏着斑处的应力纤维的三维结构,从而为理解细胞 - 基质力学提供关键信息。除了沿轴解析纳米级结构细节外,我们还利用FRET获取关于黏着斑处肌动蛋白和纽蛋白之间距离的精确信息。