Souza Mario C M M, Grieco Andrew, Frateschi Newton C, Fainman Yeshaiahu
"Gleb Wataghin" Physics Institute, University of Campinas, Campinas, SP, 13083-970, Brazil.
Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92023, USA.
Nat Commun. 2018 Feb 14;9(1):665. doi: 10.1038/s41467-018-03004-6.
Miniaturized integrated spectrometers will have unprecedented impact on applications ranging from unmanned aerial vehicles to mobile phones, and silicon photonics promises to deliver compact, cost-effective devices. Mirroring its ubiquitous free-space counterpart, a silicon photonics-based Fourier transform spectrometer (Si-FTS) can bring broadband operation and fine resolution to the chip scale. Here we present the modeling and experimental demonstration of a thermally tuned Si-FTS accounting for dispersion, thermo-optic non-linearity, and thermal expansion. We show how these effects modify the relation between the spectrum and interferogram of a light source and we develop a quantitative correction procedure through calibration with a tunable laser. We retrieve a broadband spectrum (7 THz around 193.4 THz with 0.38-THz resolution consuming 2.5 W per heater) and demonstrate the Si-FTS resilience to fabrication variations-a major advantage for large-scale manufacturing. Providing design flexibility and robustness, the Si-FTS is poised to become a fundamental building block for on-chip spectroscopy.
小型集成光谱仪将对从无人机到手机等各种应用产生前所未有的影响,而硅光子学有望提供紧凑且经济高效的设备。基于硅光子学的傅里叶变换光谱仪(Si-FTS)与无处不在的自由空间同类产品类似,能够将宽带操作和高分辨率带到芯片规模。在此,我们展示了一种考虑色散、热光非线性和热膨胀的热调谐Si-FTS的建模与实验演示。我们展示了这些效应如何改变光源光谱与干涉图之间的关系,并通过使用可调谐激光器进行校准开发了一种定量校正程序。我们获取了宽带光谱(在193.4 THz附近7 THz范围内,分辨率为0.38 THz,每个加热器功耗2.5 W),并展示了Si-FTS对制造变化的耐受性——这是大规模制造的一个主要优势。凭借其设计灵活性和稳健性,Si-FTS有望成为片上光谱学的基本构建模块。