Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile.
Departmento of Farmacología, Universidad de Concepción, Concepción, Chile.
Front Immunol. 2021 Feb 26;12:598778. doi: 10.3389/fimmu.2021.598778. eCollection 2021.
Emerging infectious diseases (EIDs) caused by viruses are increasing in frequency, causing a high disease burden and mortality world-wide. The COVID-19 pandemic caused by the novel SARS-like coronavirus (SARS-CoV-2) underscores the need to innovate and accelerate the development of effective vaccination strategies against EIDs. Human leukocyte antigen (HLA) molecules play a central role in the immune system by determining the peptide repertoire displayed to the T-cell compartment. Genetic polymorphisms of the HLA system thus confer a strong variability in vaccine-induced immune responses and may complicate the selection of vaccine candidates, because the distribution and frequencies of HLA alleles are highly variable among different ethnic groups. Herein, we build on the emerging paradigm of rational epitope-based vaccine design, by describing an immunoinformatics tool (Predivac-3.0) for proteome-wide T-cell epitope discovery that accounts for ethnic-level variations in immune responsiveness. Predivac-3.0 implements both CD8+ and CD4+ T-cell epitope predictions based on HLA allele frequencies retrieved from the Allele Frequency Net Database. The tool was thoroughly assessed, proving comparable performances (AUC ~0.9) against four state-of-the-art pan-specific immunoinformatics methods capable of population-level analysis (NetMHCPan-4.0, Pickpocket, PSSMHCPan and SMM), as well as a strong accuracy on proteome-wide T-cell epitope predictions for HIV-specific immune responses in the Japanese population. The utility of the method was investigated for the COVID-19 pandemic, by performing T-cell epitope mapping of the SARS-CoV-2 spike glycoprotein according to the ethnic context of the countries where the ChAdOx1 vaccine is currently initiating phase III clinical trials. Potentially immunodominant CD8+ and CD4+ T-cell epitopes and population coverages were predicted for each population (the Epitope Discovery mode), along with optimized sets of broadly recognized (promiscuous) T-cell epitopes maximizing coverage in the target populations (the Epitope Optimization mode). Population-specific epitope-rich regions (T-cell epitope clusters) were further predicted in protein antigens based on combined criteria of epitope density and population coverage. Overall, we conclude that Predivac-3.0 holds potential to contribute in the understanding of ethnic-level variations of vaccine-induced immune responsiveness and to guide the development of epitope-based next-generation vaccines against emerging pathogens, whose geographic distributions and populations in need of vaccinations are often well-defined for regional epidemics.
新发传染病(EID)是由病毒引起的,其发病率不断上升,在全球范围内造成了很高的疾病负担和死亡率。由新型 SARS 样冠状病毒(SARS-CoV-2)引起的 COVID-19 大流行突显了创新和加速开发针对 EID 的有效疫苗接种策略的必要性。人类白细胞抗原(HLA)分子通过决定递呈给 T 细胞区室的肽库,在免疫系统中发挥核心作用。HLA 系统的遗传多态性因此赋予了疫苗诱导的免疫反应的强变异性,并可能使疫苗候选物的选择复杂化,因为 HLA 等位基因的分布和频率在不同种族群体中差异很大。在此,我们基于基于合理表位的疫苗设计新兴范例,通过描述一种免疫信息学工具(Predivac-3.0)来描述蛋白质组范围的 T 细胞表位发现,该工具考虑了免疫反应的种族水平变化。Predivac-3.0 基于从 Allele Frequency Net Database 中检索到的 HLA 等位基因频率,同时执行 CD8+和 CD4+T 细胞表位预测。该工具经过了全面评估,与能够进行人群水平分析的四种最先进的泛特异性免疫信息学方法(NetMHCPan-4.0、Pickpocket、PSSMHCPan 和 SMM)的性能相当(AUC~0.9),并且在日本人群中针对 HIV 特异性免疫反应的蛋白质组范围 T 细胞表位预测方面具有很强的准确性。该方法的实用性通过根据 ChAdOx1 疫苗目前正在启动 III 期临床试验的国家的种族背景,对 SARS-CoV-2 刺突糖蛋白进行 T 细胞表位作图来研究 COVID-19 大流行。针对每个人群(Epitope Discovery 模式)预测了潜在的免疫优势 CD8+和 CD4+T 细胞表位和人群覆盖率,以及优化的一组广泛识别(混杂)的 T 细胞表位,最大限度地提高目标人群中的覆盖率(Epitope Optimization 模式)。还根据表位密度和人群覆盖率的综合标准,进一步预测了蛋白质抗原中的人群特异性表位丰富区(T 细胞表位簇)。总的来说,我们得出的结论是,Predivac-3.0 有可能有助于了解疫苗诱导的免疫反应的种族水平变化,并指导针对新兴病原体的基于表位的下一代疫苗的开发,这些病原体的地理分布和需要接种疫苗的人群通常在区域流行中定义明确。