Suppr超能文献

提高 HLA 抗原呈递热点预测:在治疗性蛋白免疫原性风险评估中的应用。

Improved prediction of HLA antigen presentation hotspots: Applications for immunogenicity risk assessment of therapeutic proteins.

机构信息

Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.

Assay, Analysis & Characterisation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark.

出版信息

Immunology. 2021 Feb;162(2):208-219. doi: 10.1111/imm.13274. Epub 2020 Oct 19.

Abstract

Immunogenicity risk assessment is a critical element in protein drug development. Currently, the risk assessment is most often performed using MHC-associated peptide proteomics (MAPPs) and/or T-cell activation assays. However, this is a highly costly procedure that encompasses limited sensitivity imposed by sample sizes, the MHC repertoire of the tested donor cohort and the experimental procedures applied. Recent work has suggested that these techniques could be complemented by accurate, high-throughput and cost-effective prediction of in silico models. However, this work covered a very limited set of therapeutic proteins and eluted ligand (EL) data. Here, we resolved these limitations by showcasing, in a broader setting, the versatility of in silico models for assessment of protein drug immunogenicity. A method for prediction of MHC class II antigen presentation was developed on the hereto largest available mass spectrometry (MS) HLA-DR EL data set. Using independent test sets, the performance of the method for prediction of HLA-DR antigen presentation hotspots was benchmarked. In particular, the method was showcased on a set of protein sequences including four therapeutic proteins and demonstrated to accurately predict the experimental MS hotspot regions at a significantly lower false-positive rate compared with other methods. This gain in performance was particularly pronounced when compared to the NetMHCIIpan-3.2 method trained on binding affinity data. These results suggest that in silico methods trained on MS HLA EL data can effectively and accurately be used to complement MAPPs assays for the risk assessment of protein drugs.

摘要

免疫原性风险评估是蛋白质药物开发的关键要素。目前,风险评估最常使用 MHC 相关肽蛋白质组学 (MAPPs) 和/或 T 细胞激活测定来进行。然而,这是一个非常昂贵的过程,受到样本量、测试供体群体的 MHC 谱和应用的实验程序的限制,灵敏度有限。最近的研究表明,这些技术可以通过准确、高通量和具有成本效益的计算模型预测来补充。然而,这项工作只涵盖了非常有限的治疗性蛋白质和洗脱配体 (EL) 数据。在这里,我们通过在更广泛的背景下展示计算模型在评估蛋白质药物免疫原性方面的多功能性,解决了这些限制。开发了一种用于预测 MHC 类 II 抗原呈递的方法,该方法基于迄今为止最大的可用质谱 (MS) HLA-DR EL 数据集。使用独立的测试集,对该方法用于预测 HLA-DR 抗原呈递热点的性能进行了基准测试。特别是,该方法在一组包括四种治疗性蛋白质的蛋白质序列上进行了展示,并与其他方法相比,以显著更低的假阳性率准确地预测了实验 MS 热点区域。与基于结合亲和力数据训练的 NetMHCIIpan-3.2 方法相比,这种性能的提高更为显著。这些结果表明,基于 MS HLA EL 数据训练的计算方法可以有效地、准确地用于补充 MAPPs 测定,以评估蛋白质药物的风险。

相似文献

2
Applying MAPPs Assays to Assess Drug Immunogenicity.应用 MAPP 分析评估药物免疫原性。
Front Immunol. 2020 Apr 21;11:698. doi: 10.3389/fimmu.2020.00698. eCollection 2020.

引用本文的文献

5
New light on the HLA-DR immunopeptidomic landscape.HLA-DR 免疫肽组学图谱的新见解。
J Leukoc Biol. 2024 Apr 29;115(5):913-925. doi: 10.1093/jleuko/qiae007.

本文引用的文献

3
Applying MAPPs Assays to Assess Drug Immunogenicity.应用 MAPP 分析评估药物免疫原性。
Front Immunol. 2020 Apr 21;11:698. doi: 10.3389/fimmu.2020.00698. eCollection 2020.
8
Predicting HLA class II antigen presentation through integrated deep learning.通过集成深度学习预测 HLA Ⅱ类抗原呈递
Nat Biotechnol. 2019 Nov;37(11):1332-1343. doi: 10.1038/s41587-019-0280-2. Epub 2019 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验