Department of Materials, University of Oxford , Parks Road, Oxford OX1 3PH, U.K.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7304-7314. doi: 10.1021/acsami.7b14860. Epub 2018 Feb 15.
We show how control over the chemical vapor deposition (CVD) reaction chemistry of molybdenum disulfide (MoS) by hydrogen addition can enable the direct growth of centimeter-scale continuous films of vertically stacked MoS monolayer on graphene under atmospheric pressure conditions. Hydrogen addition enables longer CVD growth times at high temperature by reducing oxidation effects that would otherwise degrade the monolayer graphene. By careful control of nucleation density and growth time, high-quality monolayer MoS films could be formed on graphene, realizing all CVD-grown vertically stacked monolayer semimetal/semiconducting interfaces. Photoluminescence spectroscopy shows quenching of MoS by the underlying graphene, indicating a good interfacial charge transfer. We utilize the MoS/graphene vertical stacks as photodetectors, with photoresponsivities reaching 2.4 A/W under 135 μW 532 nm illumination. This approach provides insights into the scalable manufacturing of high-quality two-dimensional electronic and optoelectronic devices.
我们展示了如何通过添加氢气来控制二硫化钼(MoS)的化学气相沉积(CVD)反应化学,从而能够在大气压条件下直接生长厘米级连续的石墨烯上垂直堆叠的 MoS 单层薄膜。通过减少氧化作用,氢气的添加可以使高温下的 CVD 生长时间更长,否则氧化作用会使单层石墨烯退化。通过仔细控制成核密度和生长时间,可以在石墨烯上形成高质量的单层 MoS 薄膜,实现所有 CVD 生长的垂直堆叠的单层半导体/金属界面。光致发光光谱表明,底层石墨烯对 MoS 有猝灭作用,表明界面电荷转移良好。我们利用 MoS/石墨烯垂直堆叠作为光探测器,在 135 μW 532nm 光照下,光响应率达到 2.4A/W。该方法为高质量二维电子和光电设备的可扩展制造提供了思路。