Sitek Jakub, Plocharski Janusz, Pasternak Iwona, Gertych Arkadiusz P, McAleese Clifford, Conran Ben R, Zdrojek Mariusz, Strupinski Wlodek
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):45101-45110. doi: 10.1021/acsami.0c06173. Epub 2020 Sep 28.
In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS) grown by chemical vapor deposition (CVD). MoS synthesized on a three-dimensional (3D) substrate, that is, SiO, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only. We explain the differences between MoS on SiO and graphene by the different surface diffusion mechanisms, namely, hopping and gas-molecule-collision-like mechanisms, respectively. As a result, we observe the formation of thermodynamically favorable nuclei shapes on graphene, while on SiO, a full spectrum of domain shapes can be achieved. Additionally, graphene withstands the growth process well, with only slight changes in strain and doping. Furthermore, by the application of graphene as a growth substrate, we realize van der Waals epitaxy and achieve strain-free growth, as suggested by the photoluminescence (PL) studies. We indicate that PL, contrary to Raman spectroscopy, enables us to arbitrarily determine the strain levels in MoS.
在本工作中,我们报告了衬底类型对通过化学气相沉积(CVD)生长的二硫化钼(MoS)的形貌和结构特性的影响。响应热力学条件的变化,在三维(3D)衬底(即SiO)上合成的MoS产生了不同的晶粒形貌,包括三角形、截顶三角形和圆形。同时,石墨烯上的MoS对生长条件的变化具有高度抗性,仅形成三角形晶体。我们分别通过不同的表面扩散机制,即跳跃机制和类似气体分子碰撞的机制,来解释SiO和石墨烯上MoS之间的差异。结果,我们观察到在石墨烯上形成了热力学上有利的核形状,而在SiO上,可以实现各种畴形状。此外,石墨烯在生长过程中表现良好,仅在应变和掺杂方面有轻微变化。此外,通过将石墨烯用作生长衬底,我们实现了范德华外延并实现了无应变生长,光致发光(PL)研究表明了这一点。我们指出,与拉曼光谱相反,PL使我们能够任意确定MoS中的应变水平。