Suppr超能文献

块状线对未聚集功能纳米晶体和纳米合金的阴极腐蚀。

Cathodic Corrosion of a Bulk Wire to Nonaggregated Functional Nanocrystals and Nanoalloys.

机构信息

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering , Chinese Academy of Sciences , 100190 Beijing , China.

Kavli Institute of NanoScience , Delft University of Technology , Lorentzweg 1 , 2628 CJ Delft , The Netherlands.

出版信息

ACS Appl Mater Interfaces. 2018 Mar 21;10(11):9532-9540. doi: 10.1021/acsami.7b18105. Epub 2018 Mar 6.

Abstract

A key enabling step in leveraging the properties of nanoparticles (NPs) is to explore new, simple, controllable, and scalable nanotechnologies for their syntheses. Among "wet" methods, cathodic corrosion has been used to synthesize catalytic aggregates with some control over their size and preferential faceting. Here, we report on a modification of the cathodic corrosion method for producing a range of nonaggregated nanocrystals (Pt, Pd, Au, Ag, Cu, Rh, Ir, and Ni) and nanoalloys (PtAu, PdAu, and Ag Au) with potential for scaling up the production rate. The method employs poly(vinylpyrrolidone) (PVP) as a stabilizer in an electrolyte solution containing nonreducible cations (Na, Ca), and cathodic corrosion of the corresponding wires takes place in the electrolyte under ultrasonication. The ultrasonication not only promotes particle-PVP interactions (enhancing NP dispersion and diluting locally high NP concentration) but also increases the production rate by a factor of ca. 5. Further increase in the production rate can be achieved through parallelization of electrodes to construct comb electrodes. With respect to applications, carbon-supported Pt NPs prepared by the new method exhibit catalytic activity and durability for methanol oxidation comparable or better than the commercial benchmark catalyst. A variety of Ag Au nanoalloys are characterized by ultraviolet-visible absorption spectroscopy and high-resolution transmission electron microscopy. The protocol for NP synthesis by cathodic corrosion should be a step toward its further use in academic research as well as in its practical upscaling.

摘要

利用纳米粒子(NPs)特性的关键步骤是探索新的、简单的、可控的和可扩展的纳米技术来合成它们。在“湿”方法中,阴极腐蚀已被用于合成具有一定尺寸和择优面的催化聚集体。在这里,我们报告了一种对阴极腐蚀方法的改进,用于生产一系列非聚集的纳米晶体(Pt、Pd、Au、Ag、Cu、Rh、Ir 和 Ni)和纳米合金(PtAu、PdAu 和 AgAu),具有提高生产速率的潜力。该方法在含有不可还原阳离子(Na、Ca)的电解质溶液中使用聚乙烯基吡咯烷酮(PVP)作为稳定剂,相应的线材在电解质中进行超声阴极腐蚀。超声不仅促进了颗粒-PVP 相互作用(增强了 NP 的分散性并稀释了局部高 NP 浓度),而且将产率提高了约 5 倍。通过将电极并行化以构建梳状电极,可以进一步提高产率。就应用而言,通过新方法制备的负载在碳上的 Pt NPs 表现出对甲醇氧化的催化活性和耐久性,可与商业基准催化剂相媲美或更好。通过紫外-可见吸收光谱和高分辨率透射电子显微镜对多种 AgAu 纳米合金进行了表征。阴极腐蚀法合成 NP 的方案应该是朝着在学术研究以及实际扩大规模中进一步应用的方向迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eb1/5865079/2ad2b21db705/am-2017-181054_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验