Suppr超能文献

用于动态举重任务的基于腰部肌电图(EMG)数据驱动的负荷分类

Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks.

作者信息

Totah Deema, Ojeda Lauro, Johnson Daniel D, Gates Deanna, Mower Provost Emily, Barton Kira

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States of America.

College of Engineering, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

PLoS One. 2018 Feb 15;13(2):e0192938. doi: 10.1371/journal.pone.0192938. eCollection 2018.

Abstract

OBJECTIVE

Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task.

METHODS

Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset.

RESULTS

Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69-92%.

CONCLUSION

These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications.

SIGNIFICANCE

Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.

摘要

目的

已设计出许多设备来在提举任务中支撑背部。为提高此类设备的实用性,本研究探索利用预备性肌肉活动来对肌肉负荷进行分类并启动适当的设备激活。本研究的目标是确定在动态提举任务中能够实现准确负荷分类的最早时间窗口。

方法

九名受试者进行了30次对称提举,平均分为三种重量条件(无重量、10磅和24磅),同时收集下背部肌肉活动数据。从100毫秒的数据窗口中提取了七个描述性统计特征。训练并测试了一个多项逻辑回归(MLR)分类器,采用留一法交叉验证来对提举负荷值进行分类。通过特征互相关分析和贪婪前馈选择实现了降维。受试者完全支撑负荷的时间被定义为负荷起始时间。

结果

平均分类准确率最高的区域始于负荷起始前200毫秒直至负荷起始后200毫秒,平均准确率范围为80%(±10%)至81%(±7%)。每个类别的平均召回率范围为69% - 92%。

结论

这些受试者间的分类结果表明,预备性肌肉活动可用于在负荷起始前100毫秒识别提举重量的意图。所示的高准确率表明了将意图分类用于辅助设备应用的潜力。

意义

主动辅助设备,例如外骨骼,可以通过减轻下背部肌肉负荷来预防背部损伤。早期意图分类可为致动器留出更多时间做出响应并与用户无缝集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985f/5814006/0f3e0ca9b9ca/pone.0192938.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验