Department of Electronics, Information and Bioengineering, Nearlab, Politecnico di Milano, 20133, Milan, Italy.
Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
Sci Rep. 2023 Jan 21;13(1):1184. doi: 10.1038/s41598-023-28195-x.
Nowadays, work-related musculoskeletal disorders have a drastic impact on a large part of the world population. In particular, low-back pain counts as the leading cause of absence from work in the industrial sector. Robotic exoskeletons have great potential to improve industrial workers' health and life quality. Nonetheless, current solutions are often limited by sub-optimal control systems. Due to the dynamic environment in which they are used, failure to adapt to the wearer and the task may be limiting exoskeleton adoption in occupational scenarios. In this scope, we present a deep-learning-based approach exploiting inertial sensors to provide industrial exoskeletons with human activity recognition and adaptive payload compensation. Inertial measurement units are easily wearable or embeddable in any industrial exoskeleton. We exploited Long-Short Term Memory networks both to perform human activity recognition and to classify the weight of lifted objects up to 15 kg. We found a median F1 score of [Formula: see text] (activity recognition) and [Formula: see text] (payload estimation) with subject-specific models trained and tested on 12 (6M-6F) young healthy volunteers. We also succeeded in evaluating the applicability of this approach with an in-lab real-time test in a simulated target scenario. These high-level algorithms may be useful to fully exploit the potential of powered exoskeletons to achieve symbiotic human-robot interaction.
如今,与工作相关的肌肉骨骼疾病对世界上很大一部分人口产生了巨大影响。特别是,下背痛是工业部门缺勤的主要原因。机器人外骨骼具有改善工业工人健康和生活质量的巨大潜力。然而,当前的解决方案通常受到次优控制系统的限制。由于它们在动态环境中使用,未能适应佩戴者和任务可能会限制外骨骼在职业场景中的采用。在这个范围内,我们提出了一种基于深度学习的方法,利用惯性传感器为工业外骨骼提供人体活动识别和自适应有效负载补偿。惯性测量单元易于佩戴或嵌入任何工业外骨骼中。我们利用长短时记忆网络来执行人体活动识别,并对 15 公斤以下的提升物体进行分类。我们使用经过 12 名(6 名男性-6 名女性)年轻健康志愿者的特定于主体的模型进行训练和测试,发现活动识别的中位数 F1 得分为 [Formula: see text],有效负载估计的中位数 F1 得分为 [Formula: see text]。我们还成功地在模拟目标场景中的实验室实时测试中评估了该方法的适用性。这些高级算法可能有助于充分利用动力外骨骼的潜力,实现共生的人机交互。