Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, 4072, Australia.
Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, 4072, Australia.
Acta Neuropathol Commun. 2018 Feb 15;6(1):10. doi: 10.1186/s40478-018-0514-4.
In Alzheimer disease and related disorders, the microtubule-associated protein tau aggregates and forms cytoplasmic lesions that impair neuronal physiology at many levels. In addition to affecting the host neuron, tau aggregates also spread to neighboring, recipient cells where the misfolded tau aggregates, in a manner similar to prions, actively corrupt the proper folding of soluble tau, and thereby impair cellular functions. One vehicle for the transmission of tau aggregates are secretory nanovesicles known as exosomes. Here, we established a simple model of a neuronal circuit using a microfluidics culture system in which hippocampal neurons A and B were seeded into chambers 1 and 2, respectively, extending axons via microgrooves in both directions and thereby interconnecting. This system served to establish two models to track exosome spreading. In the first model, we labeled the exosomal membrane by coupling tetraspanin CD9 with either a green or red fluorescent tag. This allowed us to reveal that interconnected neurons exchange exosomes only when their axons extend in close proximity. In the second model, we added exosomes isolated from the brains of tau transgenic rTg4510 mice (i.e. exogenous, neuron A-derived) to neurons in chamber 1 (neuron B) interconnected with neuron C in chamber 2. This allowed us to demonstrate that a substantial fraction of the exogenous exosomes were internalized by neuron B and passed then on to neuron C. This transportation from neuron B to C was achieved by a mechanism that is consistent with the hijacking of secretory endosomes by the exogenous exosomes, as revealed by confocal, super-resolution and electron microscopy. Together, these findings suggest that fusion events involving the endogenous endosomal secretory machinery increase the pathogenic potential and the radius of action of pathogenic cargoes carried by exogenous exosomes.
在阿尔茨海默病和相关疾病中,微管相关蛋白 tau 聚集并形成细胞质病变,在多个水平上损害神经元生理学。除了影响宿主神经元外,tau 聚集体还会扩散到邻近的接受细胞,在那里错误折叠的 tau 聚集体以类似于朊病毒的方式,主动破坏可溶性 tau 的正确折叠,从而损害细胞功能。tau 聚集体的一种传播载体是称为外泌体的分泌纳米囊泡。在这里,我们使用微流控培养系统建立了一个简单的神经元回路模型,其中海马神经元 A 和 B 分别接种到腔室 1 和 2 中,通过两个方向的微槽延伸轴突,并由此相互连接。该系统用于建立两种模型来跟踪外泌体的扩散。在第一个模型中,我们通过将四跨膜蛋白 CD9 与绿色或红色荧光标记物偶联来标记外泌体膜。这使我们能够揭示只有当它们的轴突紧密相邻延伸时,相互连接的神经元才会交换外泌体。在第二个模型中,我们将源自 tau 转基因 rTg4510 小鼠大脑的外泌体(即外源性、神经元 A 衍生)添加到腔室 1(神经元 B)中的神经元中,与腔室 2 中的神经元 C 相互连接。这使我们能够证明外源性外泌体的很大一部分被神经元 B 内化,并随后传递给神经元 C。这种从神经元 B 到 C 的转运是通过一种机制实现的,该机制与外源性外泌体劫持分泌性内体一致,如共聚焦、超分辨率和电子显微镜所揭示的那样。总之,这些发现表明,涉及内源性内体分泌机制的融合事件增加了由外源性外泌体携带的致病 cargo 的致病潜力和作用半径。