Suppr超能文献

对比较样品进行二维气相色谱/飞行时间质谱非靶向分析的数据分析自动化

Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples.

作者信息

Titaley Ivan A, Ogba O Maduka, Chibwe Leah, Hoh Eunha, Cheong Paul H-Y, Simonich Staci L Massey

机构信息

Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.

Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA; Department of Chemistry, Pomona College, Claremont, CA, 91711, USA.

出版信息

J Chromatogr A. 2018 Mar 16;1541:57-62. doi: 10.1016/j.chroma.2018.02.016. Epub 2018 Feb 7.

Abstract

Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO ChromaTOF software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO ChromaTOF software Statistical Compare feature. Based on this list, 63-100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold.

摘要

使用全二维气相色谱与飞行时间质谱联用技术(GC × GC/ToF-MS)对环境样品进行非靶向分析时,由于可能的分析物数量众多,会带来重大的数据分析挑战。复杂混合物的非靶向数据分析容易出现人为偏差且费力,特别是对于比较环境样品,如生物修复前后的污染土壤。为了解决这一研究瓶颈,我们开发了OCTpy,这是一个Python™脚本,用作数据简化过滤器,可自动分析来自LECO ChromaTOF软件的GC × GC/ToF-MS数据,并通过比较样品之间的峰面积来帮助选择感兴趣的分析物。我们使用了多环芳烃(PAH)污染土壤生物修复前后的数据,来评估OCTpy在促进选择处理后形成或降解的分析物方面的有效性。使用生物修复前后土壤提取物的数据集,OCTpy平均选择了LECO ChromaTOF软件统计比较功能最初建议的分析物中的18%。基于此列表,训练有素的人员识别出的候选分析物中有63 - 100%也被OCTpy选中。这个过程每个样品只需几分钟就能完成,而手动数据分析每个样品则需要几个小时。OCTpy实现了对比较样品复杂混合物的自动化分析,减少了大量数据处理过程中的人为错误可能性,并将数据分析时间至少缩短了十倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9f1/5909067/72f035582e3f/nihms957543f1.jpg

相似文献

引用本文的文献

本文引用的文献

8
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.ToxCast化学图谱:为21世纪毒理学铺平道路。
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.
9
MCPB.py: A Python Based Metal Center Parameter Builder.MCPB.py:一个基于Python的金属中心参数构建器。
J Chem Inf Model. 2016 Apr 25;56(4):599-604. doi: 10.1021/acs.jcim.5b00674. Epub 2016 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验