Suppr超能文献

基于局部相位特征的超声骨自动自适应参数化分割。

Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound.

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

出版信息

Ultrasound Med Biol. 2011 Oct;37(10):1689-703. doi: 10.1016/j.ultrasmedbio.2011.06.006. Epub 2011 Aug 6.

Abstract

Intensity-invariant local phase features based on Log-Gabor filters have been recently shown to produce highly accurate localizations of bone surfaces from three-dimensional (3-D) ultrasound. A key challenge, however, remains in the proper selection of filter parameters, whose values have so far been chosen empirically and kept fixed for a given image. Since Log-Gabor filter responses widely change when varying the filter parameters, actual parameter selection can significantly affect the quality of extracted features. This article presents a novel method for contextual parameter selection that autonomously adapts to image content. Our technique automatically selects the scale, bandwidth and orientation parameters of Log-Gabor filters for optimizing local phase symmetry. The proposed approach incorporates principle curvature computed from the Hessian matrix and directional filter banks in a phase scale-space framework. Evaluations performed on carefully designed in vitro experiments demonstrate 35% improvement in accuracy of bone surface localization compared with empirically-set parameterization results. Results from a pilot in vivo study on human subjects, scanned in the operating room, show similar improvements.

摘要

基于 Log-Gabor 滤波器的强度不变局部相位特征最近被证明可以从三维(3-D)超声中非常准确地定位骨表面。然而,一个关键的挑战仍然在于正确选择滤波器参数,迄今为止,这些参数值是根据经验选择的,并为给定的图像固定不变。由于 Log-Gabor 滤波器的响应在改变滤波器参数时会发生很大变化,因此实际的参数选择会显著影响提取特征的质量。本文提出了一种新的上下文参数选择方法,该方法可以自动适应图像内容。我们的技术自动为优化局部相位对称选择 Log-Gabor 滤波器的尺度、带宽和方向参数。所提出的方法将从 Hessian 矩阵计算的主曲率和方向滤波器组结合到相位尺度空间框架中。在精心设计的体外实验中的评估表明,与经验参数化结果相比,骨表面定位的准确性提高了 35%。在手术室对人体受试者进行的初步体内研究的结果表明,也有类似的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验