Suppr超能文献

基于 Fast-Unet+的全自动超声肾图像生物标志物预测

Fully automated kidney image biomarker prediction in ultrasound scans using Fast-Unet+.

机构信息

Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran.

Department of Radiology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2024 Feb 27;14(1):4782. doi: 10.1038/s41598-024-55106-5.

Abstract

Any kidney dimension and volume variation can be a remarkable indicator of kidney disorders. Precise kidney segmentation in standard planes plays an undeniable role in predicting kidney size and volume. On the other hand, ultrasound is the modality of choice in diagnostic procedures. This paper proposes a convolutional neural network with nested layers, namely Fast-Unet++, promoting the Fast and accurate Unet model. First, the model was trained and evaluated for segmenting sagittal and axial images of the kidney. Then, the predicted masks were used to estimate the kidney image biomarkers, including its volume and dimensions (length, width, thickness, and parenchymal thickness). Finally, the proposed model was tested on a publicly available dataset with various shapes and compared with the related networks. Moreover, the network was evaluated using a set of patients who had undergone ultrasound and computed tomography. The dice metric, Jaccard coefficient, and mean absolute distance were used to evaluate the segmentation step. 0.97, 0.94, and 3.23 mm for the sagittal frame, and 0.95, 0.9, and 3.87 mm for the axial frame were achieved. The kidney dimensions and volume were evaluated using accuracy, the area under the curve, sensitivity, specificity, precision, and F1.

摘要

任何肾脏尺寸和体积的变化都可能是肾脏疾病的显著指标。在标准平面上进行精确的肾脏分割在预测肾脏大小和体积方面起着不可否认的作用。另一方面,超声是诊断程序的首选方式。本文提出了一种具有嵌套层的卷积神经网络,即 Fast-Unet++,该模型促进了 Fast 和 accurate Unet 模型的发展。首先,该模型用于对肾脏的矢状面和轴面图像进行分割,并进行训练和评估。然后,使用预测的掩模来估计肾脏图像生物标志物,包括其体积和尺寸(长度、宽度、厚度和实质厚度)。最后,将提出的模型在具有各种形状的公共数据集上进行测试,并与相关网络进行比较。此外,该网络还使用一组接受过超声和计算机断层扫描的患者进行了评估。使用 Dice 度量、Jaccard 系数和平均绝对距离来评估分割步骤。在矢状面框架中分别达到 0.97、0.94 和 3.23mm,在轴向框架中分别达到 0.95、0.9 和 3.87mm。使用准确性、曲线下面积、灵敏度、特异性、精度和 F1 评估肾脏尺寸和体积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdad/10899245/dd4597ae44f4/41598_2024_55106_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验