Pfützner Andreas, Strobl Stephanie, Demircik Filiz, Redert Lisa, Pfützner Johannes, Pfützner Anke H, Lier Alexander
1 Pfützner Science & Health Institute, Mainz, Germany.
2 Sciema UG, Mainz, Germany.
J Diabetes Sci Technol. 2018 Nov;12(6):1178-1183. doi: 10.1177/1932296818758769. Epub 2018 Feb 16.
Frequent blood glucose readings are the most cumbersome aspect of diabetes treatment for many patients. The noninvasive TensorTip Combo Glucometer (CoG) component employs dedicated mathematical algorithms to analyze the collected signal and to predict tissue glucose at the fingertip. This study presents the performance of the CoG (the invasive and the noninvasive components) during a standardized meal experiment.
Each of the 36 participants (18 females and males each, age: 49 ± 18 years, 14 healthy subjects, 6 type 1 and 16 type 2 patients) received a device for conducting calibration at home. Thereafter, they ingested a standardized meal. Blood glucose was assessed from capillary blood samples by means of the (non)invasive device, YSI Stat 2300 plus, Contour Next at time points -30, 0, 15, 30, 45, 60, 75, 90, 120, 150, and 180 minutes. Statistical analysis was performed by consensus error grid (CEG) and calculation of mean absolute relative difference (MARD) in comparison to YSI.
For the noninvasive (NI) CoG technology, 100% of the data pairs were found in CEG zones A (96.6%) and B (3.4%); 100% were seen in zone A for the invasive component and Contour Next. MARD was calculated to be 4.2% for Contour Next, 9.2% for the invasive component, and 14.4% for the NI component.
After appropriate individual calibration of the NI technology, both the NI and the invasive CoG components reliably tracked tissue and blood glucose values, respectively. This may enable patients with diabetes to monitor their glucose levels frequently, reliably, and most of all pain-free.
对于许多患者而言,频繁测量血糖是糖尿病治疗中最麻烦的环节。无创TensorTip组合血糖仪(CoG)组件采用专用数学算法来分析采集到的信号,并预测指尖的组织葡萄糖水平。本研究展示了CoG(有创和无创组件)在标准化进餐实验中的性能。
36名参与者(男女各18名,年龄:49±18岁,14名健康受试者,6名1型患者和16名2型患者)每人都收到一台用于在家进行校准的设备。此后,他们食用了标准化餐食。在-30、0、15、30、45、60、75、90、120、150和180分钟的时间点,通过(非)侵入性设备YSI Stat 2300 plus、Contour Next从毛细血管血样中评估血糖。通过一致性误差网格(CEG)以及与YSI相比计算平均绝对相对差异(MARD)进行统计分析。
对于无创(NI)CoG技术,100%的数据对位于CEG的A区(96.6%)和B区(3.4%);有创组件和Contour Next的100%的数据对位于A区。计算得出Contour Next的MARD为4.2%,有创组件为9.2%,NI组件为14.4%。
对NI技术进行适当的个体校准后,NI和有创CoG组件分别可靠地跟踪了组织和血糖值。这可能使糖尿病患者能够频繁、可靠且最重要的是无痛地监测他们的血糖水平。