Suppr超能文献

通过标准化进餐实验评估一种新型无创血糖监测设备。

Evaluation of a New Noninvasive Glucose Monitoring Device by Means of Standardized Meal Experiments.

作者信息

Pfützner Andreas, Strobl Stephanie, Demircik Filiz, Redert Lisa, Pfützner Johannes, Pfützner Anke H, Lier Alexander

机构信息

1 Pfützner Science & Health Institute, Mainz, Germany.

2 Sciema UG, Mainz, Germany.

出版信息

J Diabetes Sci Technol. 2018 Nov;12(6):1178-1183. doi: 10.1177/1932296818758769. Epub 2018 Feb 16.

Abstract

BACKGROUND

Frequent blood glucose readings are the most cumbersome aspect of diabetes treatment for many patients. The noninvasive TensorTip Combo Glucometer (CoG) component employs dedicated mathematical algorithms to analyze the collected signal and to predict tissue glucose at the fingertip. This study presents the performance of the CoG (the invasive and the noninvasive components) during a standardized meal experiment.

METHODS

Each of the 36 participants (18 females and males each, age: 49 ± 18 years, 14 healthy subjects, 6 type 1 and 16 type 2 patients) received a device for conducting calibration at home. Thereafter, they ingested a standardized meal. Blood glucose was assessed from capillary blood samples by means of the (non)invasive device, YSI Stat 2300 plus, Contour Next at time points -30, 0, 15, 30, 45, 60, 75, 90, 120, 150, and 180 minutes. Statistical analysis was performed by consensus error grid (CEG) and calculation of mean absolute relative difference (MARD) in comparison to YSI.

RESULTS

For the noninvasive (NI) CoG technology, 100% of the data pairs were found in CEG zones A (96.6%) and B (3.4%); 100% were seen in zone A for the invasive component and Contour Next. MARD was calculated to be 4.2% for Contour Next, 9.2% for the invasive component, and 14.4% for the NI component.

CONCLUSIONS

After appropriate individual calibration of the NI technology, both the NI and the invasive CoG components reliably tracked tissue and blood glucose values, respectively. This may enable patients with diabetes to monitor their glucose levels frequently, reliably, and most of all pain-free.

摘要

背景

对于许多患者而言,频繁测量血糖是糖尿病治疗中最麻烦的环节。无创TensorTip组合血糖仪(CoG)组件采用专用数学算法来分析采集到的信号,并预测指尖的组织葡萄糖水平。本研究展示了CoG(有创和无创组件)在标准化进餐实验中的性能。

方法

36名参与者(男女各18名,年龄:49±18岁,14名健康受试者,6名1型患者和16名2型患者)每人都收到一台用于在家进行校准的设备。此后,他们食用了标准化餐食。在-30、0、15、30、45、60、75、90、120、150和180分钟的时间点,通过(非)侵入性设备YSI Stat 2300 plus、Contour Next从毛细血管血样中评估血糖。通过一致性误差网格(CEG)以及与YSI相比计算平均绝对相对差异(MARD)进行统计分析。

结果

对于无创(NI)CoG技术,100%的数据对位于CEG的A区(96.6%)和B区(3.4%);有创组件和Contour Next的100%的数据对位于A区。计算得出Contour Next的MARD为4.2%,有创组件为9.2%,NI组件为14.4%。

结论

对NI技术进行适当的个体校准后,NI和有创CoG组件分别可靠地跟踪了组织和血糖值。这可能使糖尿病患者能够频繁、可靠且最重要的是无痛地监测他们的血糖水平。

相似文献

1
Evaluation of a New Noninvasive Glucose Monitoring Device by Means of Standardized Meal Experiments.
J Diabetes Sci Technol. 2018 Nov;12(6):1178-1183. doi: 10.1177/1932296818758769. Epub 2018 Feb 16.
2
System Accuracy Assessment of a Combined Invasive and Noninvasive Glucometer.
J Diabetes Sci Technol. 2020 May;14(3):575-581. doi: 10.1177/1932296819883306. Epub 2019 Oct 22.
3
Device and Method for Noninvasive Glucose Assessment.
J Diabetes Sci Technol. 2018 Nov;12(6):1159-1168. doi: 10.1177/1932296818763457. Epub 2018 Mar 24.
4
Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors.
J Diabetes Sci Technol. 2010 May 1;4(3):583-95. doi: 10.1177/193229681000400312.
7
Accuracy of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System During 10 Days of Use in Youth and Adults with Diabetes.
Diabetes Technol Ther. 2018 Jun;20(6):395-402. doi: 10.1089/dia.2018.0150. Epub 2018 Jun 14.
8
The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System.
Diabetes Technol Ther. 2015 Nov;17(11):787-94. doi: 10.1089/dia.2014.0378. Epub 2015 Jul 14.
10
Comparative accuracy of optical sensor-based wearable system for non-invasive measurement of blood glucose concentration.
Clin Biochem. 2019 Mar;65:15-20. doi: 10.1016/j.clinbiochem.2018.12.014. Epub 2019 Jan 7.

引用本文的文献

1
Artificial intelligence-driven transformations in diabetes care: a comprehensive literature review.
Ann Med Surg (Lond). 2024 Jul 23;86(9):5334-5342. doi: 10.1097/MS9.0000000000002369. eCollection 2024 Sep.
2
Noninvasive Glucose Sensing In Vivo.
Sensors (Basel). 2023 Aug 9;23(16):7057. doi: 10.3390/s23167057.
3
Patent analysis of digital sensors for continuous glucose monitoring.
Front Public Health. 2023 Aug 9;11:1205903. doi: 10.3389/fpubh.2023.1205903. eCollection 2023.
7
A Review of Non-Invasive Optical Systems for Continuous Blood Glucose Monitoring.
Sensors (Basel). 2021 Oct 14;21(20):6820. doi: 10.3390/s21206820.
8
10
Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone.
Sensors (Basel). 2020 Feb 25;20(5):1251. doi: 10.3390/s20051251.

本文引用的文献

1
Device and Method for Noninvasive Glucose Assessment.
J Diabetes Sci Technol. 2018 Nov;12(6):1159-1168. doi: 10.1177/1932296818763457. Epub 2018 Mar 24.
2
Current and Emerging Technology for Continuous Glucose Monitoring.
Sensors (Basel). 2017 Jan 19;17(1):182. doi: 10.3390/s17010182.
3
Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study.
Diabetes Technol Ther. 2016 Aug;18(8):505-11. doi: 10.1089/dia.2016.0112. Epub 2016 Jun 2.
4
Frequency of self-monitoring blood glucose and attainment of HbA1c target values.
Acta Diabetol. 2016 Feb;53(1):57-62. doi: 10.1007/s00592-015-0745-9. Epub 2015 Apr 5.
5
Glucose concentrations in blood and tissue - a pilot study on variable time lag.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 Dec;159(4):527-34. doi: 10.5507/bp.2015.007. Epub 2015 Mar 1.
6
Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes.
J Diabetes Sci Technol. 2015 Jan;9(1):63-8. doi: 10.1177/1932296814554797. Epub 2014 Oct 10.
7
Technical aspects of the Parkes error grid.
J Diabetes Sci Technol. 2013 Sep 1;7(5):1275-81. doi: 10.1177/193229681300700517.
10
Frequency and motives of blood glucose self-monitoring in type 1 diabetes.
Diabetes Res Clin Pract. 2009 Aug;85(2):183-8. doi: 10.1016/j.diabres.2009.04.022. Epub 2009 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验