Suppr超能文献

从器官到生态系统评估植物生长的动力学基础。

Evaluating the kinetic basis of plant growth from organs to ecosystems.

机构信息

Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA.

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.

出版信息

New Phytol. 2018 Jul;219(1):37-44. doi: 10.1111/nph.15015. Epub 2018 Feb 16.

Abstract

Contents Summary 37 I. Introduction 37 II. Predictions for metabolic kinetics 38 III. Kinetics of net photosynthesis 38 IV. Kinetics of plant growth 40 V. Hypotheses for higher-level kinetic decoupling 41 VI. Conclusions 42 Acknowledgements 42 References 42 SUMMARY: Understanding how temperature influences the scaling of physiological rates through levels of biological organization is critical for predicting plant responses to climate. Metabolic theory predicts that many rates increase exponentially with temperature following an activation energy (E) of 0.32 eV for photosynthesis. Here, I evaluate this prediction for net photosynthesis and organ, individual, and ecosystem growth. Observed E for photosynthesis varied widely but was not statistically different from predictions, while E for organs was greater than predicted, and E for individuals and ecosystems only weakly characterized temperature responses. I review several hypotheses that may underlie these results. Understanding how multiple rate-limiting processes coalesce into a single E that characterizes metabolic responses to temperature, and how to best estimate E from unimodal data, remain important challenges.

摘要

内容概述 37 I. 引言 37 II. 代谢动力学预测 38 III. 净光合作用动力学 38 IV. 植物生长动力学 40 V. 更高层次动力学解耦假设 41 VI. 结论 42 致谢 42 参考文献 42 概述:理解温度如何通过生物组织层次影响生理速率的缩放对于预测植物对气候的响应至关重要。代谢理论预测,光合作用的许多速率随温度呈指数增长,其激活能(E)为 0.32 eV。在这里,我评估了净光合作用以及器官、个体和生态系统生长对这一预测的验证。观察到的光合作用 E 值变化范围很广,但与预测值没有统计学差异,而器官的 E 值大于预测值,个体和生态系统的 E 值仅能微弱地描述温度响应。我回顾了几种可能导致这些结果的假设。理解多个限速过程如何汇聚为一个单一的 E 来描述代谢对温度的响应,以及如何从单峰数据中最好地估计 E,仍然是重要的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验