Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
J Proteomics. 2018 Oct 30;189:75-90. doi: 10.1016/j.jprot.2018.02.008. Epub 2018 Feb 13.
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
蛋白质形式的巨大多样性在细胞蛋白质组中产生了巨大的复杂性,促进了分子相互作用的复杂网络的形成,并对生物医学研究人员构成了巨大的分析挑战。目前,定量全蛋白质组谱分析通常依赖于非靶向液相色谱-质谱(LC-MS),它广泛地采样蛋白质形式,但与靶向 LC-MS 相比,其准确性、灵敏度和重现性可能较低。最近在使用靶向 LC-MS 的自上而下的蛋白质组学方面的进展,使得以前无法实现的目标蛋白质和复杂样品中翻译后修饰的鉴定和定量成为可能。因此,靶向 LC-MS 正在快速推进生物医学研究,特别是在包括蛋白质基因组学、相互作用组学、激酶组学和生物途径建模在内的各种领域的系统生物学研究。最近针对几乎整个人类蛋白质组的靶向 LC-MS 分析方法的发展,使靶向 LC-MS 能够实现前所未有的质量和可及性的定量蛋白质组学分析,以支持基础和临床研究。在这里,我们回顾了使用靶向 LC-MS 的自上而下的蛋白质组学在系统生物学研究中的最新应用。意义:靶向蛋白质组学的进展正在快速推进系统生物学研究。最近的应用包括针对翻译后修饰(如磷酸蛋白质组学)、蛋白质构象、蛋白质-蛋白质相互作用、激酶组学、蛋白质基因组学以及代谢和信号通路等系统水平的研究。值得注意的是,代谢和信号通路蛋白的绝对定量使得准确的途径建模和工程成为可能。靶向蛋白质组学与其他技术(如 RNA-seq)的整合,促进了各种研究,例如鉴定数百种“缺失”的人类蛋白质(似乎编码蛋白质的基因和转录本,但缺乏直接的实验证据)。