Suppr超能文献

使用探索性数据分析识别非自杀性自伤特征在分类自杀意念、计划和行为中的相对重要性。

Identifying the relative importance of non-suicidal self-injury features in classifying suicidal ideation, plans, and behavior using exploratory data mining.

机构信息

Temple University, Department of Psychology, Philadelphia, PA, USA.

University of Notre Dame, Department of Psychology, Notre Dame, IN, USA.

出版信息

Psychiatry Res. 2018 Apr;262:175-183. doi: 10.1016/j.psychres.2018.01.045. Epub 2018 Jan 31.

Abstract

Individuals with a history of non-suicidal self-injury (NSSI) are at alarmingly high risk for suicidal ideation (SI), planning (SP), and attempts (SA). Given these findings, research has begun to evaluate the features of this multi-faceted behavior that may be most important to assess when quantifying risk for SI, SP, and SA. However, no studies have examined the wide range of NSSI characteristics simultaneously when determining which NSSI features are most salient to suicide risk. The current study utilized three exploratory data mining techniques (elastic net regression, decision trees, random forests) to address these gaps in the literature. Undergraduates with a history of NSSI (N = 359) were administered measures assessing demographic variables, depression, and 58 NSSI characteristics (e.g., methods, frequency, functions, locations, scarring) as well as current SI, current SP, and SA history. Results suggested that depressive symptoms and the anti-suicide function of NSSI were the most important features for predicting SI and SP. The most important features in predicting SA were the anti-suicide function of NSSI, NSSI-related medical treatment, and NSSI scarring. Overall, results suggest that NSSI functions, scarring, and medical lethality may be more important to assess than commonly regarded NSSI severity indices when ascertaining suicide risk.

摘要

有非自杀性自伤史的个体自杀意念、自杀计划和自杀企图的风险极高。鉴于这些发现,研究已经开始评估这种多方面行为的特征,这些特征可能在量化自杀意念、自杀计划和自杀企图的风险时最重要。然而,当确定哪些非自杀性自伤特征与自杀风险最相关时,尚无研究同时检查非自杀性自伤特征的广泛范围。本研究利用三种探索性数据挖掘技术(弹性网络回归、决策树、随机森林)来解决文献中的这些空白。有非自杀性自伤史的本科生(N=359)接受了评估人口统计学变量、抑郁和 58 种非自杀性自伤特征(如方法、频率、功能、地点、疤痕)以及当前自杀意念、当前自杀计划和自杀史的测量。结果表明,抑郁症状和非自杀性自伤的抗自杀功能是预测自杀意念和自杀计划的最重要特征。预测自杀企图的最重要特征是非自杀性自伤的抗自杀功能、与非自杀性自伤相关的医疗、以及非自杀性自伤的疤痕。总的来说,结果表明,在确定自杀风险时,非自杀性自伤的功能、疤痕和医疗致死性可能比通常认为的非自杀性自伤严重程度指标更重要。

相似文献

引用本文的文献

5
Predicting the trajectory of non-suicidal self-injury among adolescents.预测青少年非自杀性自伤行为的发展轨迹。
J Child Psychol Psychiatry. 2025 Feb;66(2):189-201. doi: 10.1111/jcpp.14046. Epub 2024 Aug 13.

本文引用的文献

3
Predicting Suicidal Behavior From Longitudinal Electronic Health Records.从纵向电子健康记录预测自杀行为。
Am J Psychiatry. 2017 Feb 1;174(2):154-162. doi: 10.1176/appi.ajp.2016.16010077. Epub 2016 Sep 9.
10
The psychology of suicidal behaviour.自杀行为心理学
Lancet Psychiatry. 2014 Jun;1(1):73-85. doi: 10.1016/S2215-0366(14)70222-6. Epub 2014 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验