Suppr超能文献

美国当代猪源 H1 流感病毒的抗原和遗传进化。

Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

机构信息

Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA.

Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK.

出版信息

Virology. 2018 May;518:45-54. doi: 10.1016/j.virol.2018.02.006. Epub 2018 Feb 16.

Abstract

Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission.

摘要

目前,几种甲型流感病毒(IAV)在北美猪群中流行。IAV 在猪与人之间传播并随后进化,进一步增加了遗传多样性。在这里,我们对代表当前在美国猪群中流行的 H1-α(1A.1)、H1-β(1A.2)、H1pdm(1A.3.3.2)、H1-γ(1A.3.3.3)、H1-δ1(1B.2.2)和 H1-δ2(1B.2.1)的当代 H1N1 和 H1N2 猪源病毒的遗传和抗原进化特征进行了描述。δ1 病毒分化为两个新的遗传分支,H1-δ1a(1B.2.2.1)和 H1-δ1b(1B.2.2.2),它们与早期的 H1-δ1 病毒在抗原上也有明显不同。进一步的特征分析表明,这些群体中抗原差异与少数关键氨基酸变化有关。当代 H1 病毒的持续遗传和抗原进化可能导致疫苗交叉保护的丧失,这可能给养猪业带来重大的经济影响,也代表了对试图最大限度减少猪源 IAV 向人类传播的公共卫生倡议的挑战。

相似文献

1
Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.
Virology. 2018 May;518:45-54. doi: 10.1016/j.virol.2018.02.006. Epub 2018 Feb 16.
2
Antigenic Characterization and Pandemic Risk Assessment of North American H1 Influenza A Viruses Circulating in Swine.
Microbiol Spectr. 2022 Dec 21;10(6):e0178122. doi: 10.1128/spectrum.01781-22. Epub 2022 Nov 1.
6
Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.
Arch Virol. 2013 Apr;158(4):859-76. doi: 10.1007/s00705-013-1616-8. Epub 2013 Feb 23.
7
Influenza A Virus Field Surveillance at a Swine-Human Interface.
mSphere. 2020 Feb 5;5(1):e00822-19. doi: 10.1128/mSphere.00822-19.
9
Comparative and Analysis of H1N1 and H1N2 Variant Influenza Viruses Isolated from Humans between 2011 and 2016.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.01444-18. Print 2018 Nov 15.

引用本文的文献

1
Passage of human-origin influenza A virus in swine tracheal epithelial cells selects for adaptive mutations in the hemagglutinin gene.
PLoS One. 2025 Aug 13;20(8):e0327096. doi: 10.1371/journal.pone.0327096. eCollection 2025.
5
Genomic diversity and evolutionary dynamics of Influenza A viruses in Colombian swine: implications for one health surveillance and control.
Emerg Microbes Infect. 2024 Dec;13(1):2368202. doi: 10.1080/22221751.2024.2368202. Epub 2024 Jul 6.
6
Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections.
PLoS Pathog. 2024 Apr 16;20(4):e1012131. doi: 10.1371/journal.ppat.1012131. eCollection 2024 Apr.
9
From Snoot to Tail: A Brief Review of Influenza Virus Infection and Immunity in Pigs.
J Immunol. 2023 Oct 15;211(8):1187-1194. doi: 10.4049/jimmunol.2300385.
10
Long-Term Epidemiology and Evolution of Swine Influenza Viruses, Vietnam.
Emerg Infect Dis. 2023 Jul;29(7):1397-1406. doi: 10.3201/eid2907.230165.

本文引用的文献

1
The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016.
J Gen Virol. 2017 Aug;98(8):2001-2010. doi: 10.1099/jgv.0.000885. Epub 2017 Jul 31.
4
Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).
Virus Evol. 2016 Apr 9;2(1):vew007. doi: 10.1093/ve/vew007. eCollection 2016 Jan.
5
Influenza Research Database: An integrated bioinformatics resource for influenza virus research.
Nucleic Acids Res. 2017 Jan 4;45(D1):D466-D474. doi: 10.1093/nar/gkw857. Epub 2016 Sep 26.
6
The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus.
J Virol. 2016 Aug 26;90(18):8266-80. doi: 10.1128/JVI.01002-16. Print 2016 Sep 15.
7
The global antigenic diversity of swine influenza A viruses.
Elife. 2016 Apr 15;5:e12217. doi: 10.7554/eLife.12217.
8
Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1701-9. doi: 10.1073/pnas.1525578113. Epub 2016 Mar 7.
10
Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses.
J Virol. 2015 Apr;89(7):3763-75. doi: 10.1128/JVI.02962-14. Epub 2015 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验