Li Wen, Liu Zheng, Koripella Ravi Kiran, Langlois Robert, Sanyal Suparna, Frank Joachim
Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA.
Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden.
Sci Adv. 2015 May 1;1(4). doi: 10.1126/sciadv.1500169.
During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.
在蛋白质合成过程中,每添加一个氨基酸使多肽链延伸后,都会紧接着一个易位步骤,即信使核糖核酸(mRNA)和转运核糖核酸(tRNA)向前移动一个密码子。这一关键步骤由延伸因子G(EF-G,一种鸟苷三磷酸酶(GTPase))催化,并伴随着两个核糖体亚基之间的旋转。EF-G的一个突变体H91A使该因子在鸟苷三磷酸(GTP)水解方面受损,从而使其在核糖体上稳定下来。我们使用近原子分辨率的低温电子显微镜(cryo-EM)来研究EF-G H91A在其GTP状态下与核糖体形成的两种复合物,这两种复合物的区别在于亚基间旋转的有无。对这两种结构的比较支持了EF-G开关II环中保守组氨酸在GTPase激活中起直接作用的观点,并解释了为什么当EF-G与未旋转形式的核糖体结合时GTP水解无法进行。