Suppr超能文献

一种用于评估诊断试验风险分层的新指标:以跨人群评估宫颈癌筛查试验为例。

A novel metric that quantifies risk stratification for evaluating diagnostic tests: The example of evaluating cervical-cancer screening tests across populations.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA.

出版信息

Prev Med. 2018 May;110:100-105. doi: 10.1016/j.ypmed.2018.02.013. Epub 2018 Feb 14.

Abstract

Our work involves assessing whether new biomarkers might be useful for cervical-cancer screening across populations with different disease prevalences and biomarker distributions. When comparing across populations, we show that standard diagnostic accuracy statistics (predictive values, risk-differences, Youden's index and Area Under the Curve (AUC)) can easily be misinterpreted. We introduce an intuitively simple statistic for a 2 × 2 table, Mean Risk Stratification (MRS): the average change in risk (pre-test vs. post-test) revealed for tested individuals. High MRS implies better risk separation achieved by testing. MRS has 3 key advantages for comparing test performance across populations with different disease prevalences and biomarker distributions. First, MRS demonstrates that conventional predictive values and the risk-difference do not measure risk-stratification because they do not account for test-positivity rates. Second, Youden's index and AUC measure only multiplicative relative gains in risk-stratification: AUC = 0.6 achieves only 20% of maximum risk-stratification (AUC = 0.9 achieves 80%). Third, large relative gains in risk-stratification might not imply large absolute gains if disease is rare, demonstrating a "high-bar" to justify population-based screening for rare diseases such as cancer. We illustrate MRS by our experience comparing the performance of cervical-cancer screening tests in China vs. the USA. The test with the worst AUC = 0.72 in China (visual inspection with acetic acid) provides twice the risk-stratification (i.e. MRS) of the test with best AUC = 0.83 in the USA (human papillomavirus and Pap cotesting) because China has three times more cervical precancer/cancer. MRS could be routinely calculated to better understand the clinical/public-health implications of standard diagnostic accuracy statistics.

摘要

我们的工作涉及评估新的生物标志物是否可用于具有不同疾病流行率和生物标志物分布的人群的宫颈癌筛查。在跨人群比较时,我们发现标准诊断准确性统计数据(预测值、风险差异、Youden 指数和曲线下面积(AUC))可能很容易被误解。我们引入了一个用于 2×2 表的直观简单统计量,即平均风险分层(MRS):对测试个体进行测试时揭示的风险(预测试与后测试)的平均变化。高 MRS 意味着通过测试实现了更好的风险分层。MRS 对于比较具有不同疾病流行率和生物标志物分布的人群的测试性能具有 3 个关键优势。首先,MRS 表明传统的预测值和风险差异不能衡量风险分层,因为它们没有考虑测试阳性率。其次,Youden 指数和 AUC 仅衡量风险分层的乘法相对增益:AUC=0.6 仅实现 20%的最大风险分层(AUC=0.9 实现 80%)。第三,如果疾病罕见,风险分层的相对增益大并不意味着绝对增益大,这表明需要一个“高门槛”来证明基于人群的罕见疾病(如癌症)筛查是合理的。我们通过比较中国与美国的宫颈癌筛查测试性能的经验来说明 MRS。在中国表现最差的 AUC=0.72 的测试(醋酸视觉检查)提供了两倍的风险分层(即 MRS),而在美国表现最好的 AUC=0.83 的测试(人乳头瘤病毒和巴氏涂片联合检测),因为中国的宫颈前癌/癌的发病率是美国的三倍。可以常规计算 MRS,以更好地理解标准诊断准确性统计数据的临床/公共卫生意义。

相似文献

引用本文的文献

1
Lung ultrasound score to predict development of acute chest syndrome in children with sickle cell disease.肺超声评分预测镰状细胞病患儿急性胸综合征的发生
Hematol Transfus Cell Ther. 2024 Nov;46 Suppl 5(Suppl 5):S239-S245. doi: 10.1016/j.htct.2024.07.003. Epub 2024 Sep 23.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验