Suppr超能文献

实时步态生物反馈对中风后个体患侧推进力和步态生物力学的影响。

Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.

作者信息

Genthe Katlin, Schenck Christopher, Eicholtz Steven, Zajac-Cox Laura, Wolf Steven, Kesar Trisha M

机构信息

a Division of Physical Therapy, Department of Rehabilitation Medicine , Emory University , Atlanta , GA , USA.

b Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA , USA.

出版信息

Top Stroke Rehabil. 2018 Apr;25(3):186-193. doi: 10.1080/10749357.2018.1436384. Epub 2018 Feb 19.

Abstract

Objectives Gait training interventions that target paretic propulsion induce improvements in walking speed and function in individuals post-stroke. Previously, we demonstrated that able-bodied individuals increase propulsion unilaterally when provided real-time biofeedback targeting anterior ground reaction forces (AGRF). The purpose of this study was to, for the first time, investigate short-term effects of real-time AGRF gait biofeedback training on post-stroke gait. Methods Nine individuals with post-stroke hemiparesis (6 females, age = 54 ± 12.4 years 39.2 ± 24.4 months post-stroke) completed three 6-minute training bouts on an instrumented treadmill. During training, visual and auditory biofeedback were provided to increase paretic AGRF during terminal stance. Gait biomechanics were evaluated before training, and during retention tests conducted 2, 15, and 30 minutes post-training. Primary dependent variables were paretic and non-paretic peak AGRF; secondary variables included paretic and non-paretic peak trailing limb angle, plantarflexor moment, and step length. In addition to evaluating the effects of biofeedback training on these dependent variables, we compared effects of a 6-minute biofeedback training bout to a non-biofeedback control condition. Results Compared to pre-training, significantly greater paretic peak AGRFs were generated during the 2, 15, and 30-minute retention tests conducted after the 18-minute biofeedback training session. Biofeedback training induced no significant effects on the non-paretic leg. Comparison of a 6-minute biofeedback training bout with a speed-matched control bout without biofeedback demonstrated a main effect for training type, with greater peak AGRF generation during biofeedback. Discussion Our results suggest that AGRF biofeedback may be a feasible and promising gait training strategy to target propulsive deficits in individuals post-stroke.

摘要

目的 针对偏瘫推进力的步态训练干预可改善中风后个体的步行速度和功能。此前,我们证明,在提供针对前向地面反作用力(AGRF)的实时生物反馈时,健全个体能够单侧增加推进力。本研究的目的是首次调查实时AGRF步态生物反馈训练对中风后步态的短期影响。方法 9名中风后偏瘫患者(6名女性,年龄=54±12.4岁,中风后39.2±24.4个月)在装有仪器的跑步机上完成了3次6分钟的训练回合。在训练过程中,提供视觉和听觉生物反馈,以增加终末支撑期患侧的AGRF。在训练前以及训练后2、15和30分钟进行的保持测试期间评估步态生物力学。主要因变量是患侧和非患侧的AGRF峰值;次要变量包括患侧和非患侧的后肢峰值角度、跖屈力矩和步长。除了评估生物反馈训练对这些因变量的影响外,我们还将6分钟的生物反馈训练回合与无生物反馈的对照条件的效果进行了比较。结果 与训练前相比,在18分钟生物反馈训练课程后的2、15和30分钟保持测试期间,患侧产生的AGRF峰值明显更大。生物反馈训练对非患侧腿没有显著影响。将6分钟的生物反馈训练回合与无生物反馈的速度匹配对照回合进行比较,结果显示训练类型有主要影响,生物反馈期间产生的AGRF峰值更大。讨论 我们的结果表明,AGRF生物反馈可能是一种可行且有前景的步态训练策略,可针对中风后个体的推进力缺陷。

相似文献

1
Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
Top Stroke Rehabil. 2018 Apr;25(3):186-193. doi: 10.1080/10749357.2018.1436384. Epub 2018 Feb 19.
2
Effects of unilateral real-time biofeedback on propulsive forces during gait.
J Neuroeng Rehabil. 2017 Jun 6;14(1):52. doi: 10.1186/s12984-017-0252-z.
5
Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
Gait Posture. 2022 Jul;96:275-278. doi: 10.1016/j.gaitpost.2022.05.022. Epub 2022 May 21.
6
Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics.
Gait Posture. 2021 Jan;83:107-113. doi: 10.1016/j.gaitpost.2020.10.014. Epub 2020 Oct 16.
7
Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.
Ann Biomed Eng. 2024 Feb;52(2):355-363. doi: 10.1007/s10439-023-03381-0. Epub 2023 Oct 23.
8
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
10
Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
Gait Posture. 2019 Feb;68:6-14. doi: 10.1016/j.gaitpost.2018.10.027. Epub 2018 Oct 25.

引用本文的文献

1
Real-time augmented feedback for gait training: are gait responses affected by the choice of target parameter?
Front Bioeng Biotechnol. 2025 Aug 8;13:1645390. doi: 10.3389/fbioe.2025.1645390. eCollection 2025.
2
Overhead support systems differentially affect gait analysis of overground and treadmill walking.
Gait Posture. 2025 Jul;120:161-169. doi: 10.1016/j.gaitpost.2025.04.008. Epub 2025 Apr 11.
4
Within-session propulsion asymmetry changes have a limited effect on gait asymmetry post-stroke.
J Neuroeng Rehabil. 2025 Jan 22;22(1):9. doi: 10.1186/s12984-025-01553-8.
7
Inertial measurement unit-based real-time feedback gait immediately changes gait parameters in older inpatients: a pilot study.
Front Physiol. 2024 Aug 6;15:1384313. doi: 10.3389/fphys.2024.1384313. eCollection 2024.
8
Visuospatial Skills Explain Differences in the Ability to Use Propulsion Biofeedback Post-stroke.
J Neurol Phys Ther. 2024 Oct 1;48(4):207-216. doi: 10.1097/NPT.0000000000000487. Epub 2024 Sep 17.
9
Visual feedback improves propulsive force generation during treadmill walking in people with Parkinson disease.
J Biomech. 2024 Apr;167:112073. doi: 10.1016/j.jbiomech.2024.112073. Epub 2024 Apr 3.

本文引用的文献

1
Effects of unilateral real-time biofeedback on propulsive forces during gait.
J Neuroeng Rehabil. 2017 Jun 6;14(1):52. doi: 10.1186/s12984-017-0252-z.
2
Validity and repeatability of inertial measurement units for measuring gait parameters.
Gait Posture. 2017 Jun;55:87-93. doi: 10.1016/j.gaitpost.2017.04.013. Epub 2017 Apr 12.
3
Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review.
J Physiother. 2017 Jan;63(1):11-16. doi: 10.1016/j.jphys.2016.11.006. Epub 2016 Nov 25.
5
Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
J Biomech. 2016 Feb 8;49(3):388-95. doi: 10.1016/j.jbiomech.2015.12.040. Epub 2015 Dec 31.
6
Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
J Neuroeng Rehabil. 2016 Jan 15;13:2. doi: 10.1186/s12984-016-0113-1.
7
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
9
Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
J Neuroeng Rehabil. 2015 Oct 14;12:90. doi: 10.1186/s12984-015-0081-x.
10
Mechanisms to increase propulsive force for individuals poststroke.
J Neuroeng Rehabil. 2015 Apr 18;12:40. doi: 10.1186/s12984-015-0030-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验