Lawrence Berkeley National Laboratory, Berkeley, United States of America.
Rep Prog Phys. 2018 Jun;81(6):066101. doi: 10.1088/1361-6633/aab064. Epub 2018 Feb 19.
The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.
大型强子对撞机(LHC)实验 ATLAS 和 CMS 已经确定混合像素探测器是在高速率和辐射环境中进行粒子跟踪和顶点探测的首选仪器,因为它们靠近 LHC 相互作用点运行。随着高亮度 LHC 升级的到来,跟踪探测器将被完全替换,新一代的像素探测器正在被设计出来。它们必须解决在数据吞吐量和辐射水平方面的巨大挑战,包括电离和非电离辐射,这些辐射同样会损害像素探测器的传感和读出部分。微电子学和微处理技术的进步现在使大规模探测器设计具有前所未有的测量精度(空间和时间)、辐射硬传感器和读出芯片、混合技术、轻量级支撑以及完全单片方法的性能,以应对这些挑战。本文综述了这些发展的全球努力。