Zhang Leigang, Yu Hongliu, Li Desheng
Institute of Rehabilitation Engineering and Technology, Shanghai University of Science and Technology (USST), Shanghai 200093, China.
Shanghai Huizhikang Intelligent Technology Co., Ltd., Shanghai 201800, China.
Sensors (Basel). 2025 May 12;25(10):3032. doi: 10.3390/s25103032.
Clinical research has demonstrated that stroke patients benefit from active participation during robot-assisted training. However, the weight of the arm impedes the execution of tasks and movements due to the functional disability. The purpose of this paper is to develop a gravity compensation strategy for an end-effector upper limb rehabilitation robot based on an arm dynamics model to reduce the arm's muscle activation level. This control strategy enables real-time evaluation of arm gravity torques based on feedback from upper limb kinematic parameters. The performance of the proposed strategy in movement tracking is then compared to that of other types of weight compensation strategies. Experimental results demonstrate that compared to movements without compensation, the mean activation levels of arm muscles with the proposed strategy showed a significant reduction ( < 0.05), except for activation of the triceps. Furthermore, the proposed strategy provides superior performance in reducing the arm muscle's effort compared to the position-varying weight compensation strategy. Therefore, with the proposed strategy, the end-effector rehabilitation robot might improve participation in robot-assisted rehabilitation training, as well as the usability and feasibility of the rehabilitation or assistive robot.
临床研究表明,中风患者在机器人辅助训练期间积极参与会从中受益。然而,由于功能障碍,手臂的重量会妨碍任务和动作的执行。本文的目的是基于手臂动力学模型为末端执行器上肢康复机器人开发一种重力补偿策略,以降低手臂的肌肉激活水平。这种控制策略能够根据上肢运动学参数的反馈实时评估手臂重力扭矩。然后将所提出策略在运动跟踪方面的性能与其他类型的重量补偿策略进行比较。实验结果表明,与无补偿的运动相比,除了肱三头肌的激活外,采用所提出策略时手臂肌肉的平均激活水平显著降低(<0.05)。此外,与位置可变重量补偿策略相比,所提出的策略在减少手臂肌肉用力方面具有更优的性能。因此,采用所提出的策略,末端执行器康复机器人可能会提高在机器人辅助康复训练中的参与度,以及康复或辅助机器人的可用性和可行性。