Suppr超能文献

一种用于放疗中多模态弥散和灌注磁共振图像的脑胶质瘤自动分割的模糊特征融合方法。

A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

机构信息

Department of Biomedical Engineering, Tianjin University, Tianjin, 300072, China.

Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China.

出版信息

Sci Rep. 2018 Feb 19;8(1):3231. doi: 10.1038/s41598-018-21678-2.

Abstract

The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

摘要

弥散和灌注磁共振(MR)图像可以提供肿瘤的功能信息,并能更敏感地检测肿瘤的范围。我们旨在开发一种模糊特征融合方法,用于使用多参数功能磁共振图像(包括表观扩散系数(ADC)、各向异性分数(FA)和相对脑血容量(rCBV))自动分割放疗计划中的脑胶质瘤。对于每种功能模式,创建一个基于直方图的模糊模型,将图像体积转换为模糊特征空间。基于三个模糊特征空间的模糊融合结果,自动生成区域可能性高的肿瘤区域。在结构磁共振图像的自动分割肿瘤中添加最终自动分割的大体肿瘤体积(GTV)。为了评估,一位放射肿瘤学家用所有模态为 9 位患者勾画 GTV。手动勾画和自动勾画 GTV 之间的比较表明,平均体积差异为 8.69%(±5.62%);平均 Dice 相似系数(DSC)为 0.88(±0.02);自动勾画的平均灵敏度和特异性分别为 0.87(±0.04)和 0.98(±0.01)。该新方法具有较高的准确性和效率,有望利用功能多参数磁共振图像为脑胶质瘤患者的精确放射治疗计划中的靶区定义提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf59/5818538/158d97b841a1/41598_2018_21678_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验