Suppr超能文献

Tachyon-I 飞行时间 PET 扫描仪的病灶检测和定量性能:体模和人体研究。

Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies.

机构信息

Department of Biomedical Engineering, University of California, Davis, CA 95616, United States of America.

出版信息

Phys Med Biol. 2018 Mar 16;63(6):065010. doi: 10.1088/1361-6560/aab0f3.

Abstract

The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

摘要

第一代 Tachyon PET(Tachyon-I)是一种演示用的单环 PET 扫描仪,使用与传统光电倍增管耦合的 LSO 闪烁体晶体达到 314 ps 的符合时间分辨率。本研究的目的是量化 Tachyon-I 扫描仪改进的飞行时间(TOF)性能对病灶检测和定量性能的改善。我们开发了一种用于 Tachyon-I 的定量 TOF 图像重建方法,并评估了其 TOF 增益在病灶检测和定量中的作用。使用标准 NEMA 体模或健康志愿者的扫描分别作为正常背景数据。在考虑到物体衰减后,将单独扫描的点源和球体数据叠加到体模或人体数据上。我们使用自举方法生成了多个具有和不具有病灶的独立噪声数据集。对于每个病灶大小和位置组合,使用通道化霍特林观测器(CHO)计算了信噪比(SNR),以评估病灶检测性能。还计算了每个病灶摄取的偏差与标准偏差的权衡,以评估定量性能。CHO-SNR 测量结果显示,具有更好时间分辨率的病灶检测性能得到了改善。检测性能还取决于病灶的大小和位置,以及背景物体的大小和形状。偏差与噪声权衡的结果表明,在 TOF 500 ps 以上和非 TOF 模式下,噪声(标准偏差)降低率约为 1.1-1.3,与病灶检测的 SNR 增益相似。总之,这项 Tachyon-I PET 研究表明,改进的飞行时间性能对体模和人体受试者的病灶检测和 ROI 定量均有益处。

相似文献

2
Performance of the Tachyon Time-of-Flight PET Camera.
IEEE Trans Nucl Sci. 2015 Feb;62(1):111-119. doi: 10.1109/TNS.2014.2375176. Epub 2015 Feb 6.
4
Physical performance of the new hybrid PET∕CT Discovery-690.
Med Phys. 2011 Oct;38(10):5394-411. doi: 10.1118/1.3635220.
5
Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability.
Med Phys. 2019 Apr;46(4):1798-1813. doi: 10.1002/mp.13397. Epub 2019 Feb 14.
6
Proof-of-concept prototype time-of-flight PET system based on high-quantum-efficiency multianode PMTs.
Med Phys. 2017 Oct;44(10):5314-5324. doi: 10.1002/mp.12440. Epub 2017 Aug 18.
7
Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca.
Phys Med Biol. 2015 Jun 21;60(12):4635-49. doi: 10.1088/0031-9155/60/12/4635. Epub 2015 May 28.
10
Benefit of time-of-flight in PET: experimental and clinical results.
J Nucl Med. 2008 Mar;49(3):462-70. doi: 10.2967/jnumed.107.044834. Epub 2008 Feb 20.

引用本文的文献

2
PET detectors with 127 ps CTR for the Tachyon-II time-of-flight PET scanner.
Nucl Instrum Methods Phys Res A. 2019 Jul 21;933:48-55. doi: 10.1016/j.nima.2019.03.083. Epub 2019 Apr 11.
3
Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification.
Phys Med Biol. 2018 Jun 27;63(13):135010. doi: 10.1088/1361-6560/aac815.

本文引用的文献

1
Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.
Phys Med Biol. 2017 Mar 21;62(6):2465-2485. doi: 10.1088/1361-6560/aa5e46. Epub 2017 Feb 27.
2
Designing a compact high performance brain PET scanner-simulation study.
Phys Med Biol. 2016 May 21;61(10):3681-97. doi: 10.1088/0031-9155/61/10/3681. Epub 2016 Apr 15.
3
Performance of the Tachyon Time-of-Flight PET Camera.
IEEE Trans Nucl Sci. 2015 Feb;62(1):111-119. doi: 10.1109/TNS.2014.2375176. Epub 2015 Feb 6.
4
Randoms and TOF gain revisited.
Phys Med Biol. 2015 Feb 21;60(4):1613-23. doi: 10.1088/0031-9155/60/4/1613. Epub 2015 Jan 23.
5
Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET.
J Nucl Med. 2014 Apr;55(4):602-7. doi: 10.2967/jnumed.113.127035. Epub 2014 Mar 6.
6
Regularization design in penalized maximum-likelihood image reconstruction for lesion detection in 3D PET.
Phys Med Biol. 2014 Jan 20;59(2):403-19. doi: 10.1088/0031-9155/59/2/403. Epub 2013 Dec 19.
7
Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study.
Phys Med Biol. 2013 Mar 7;58(5):1465-78. doi: 10.1088/0031-9155/58/5/1465. Epub 2013 Feb 13.
8
Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information.
IEEE Trans Med Imaging. 2012 Sep;31(9):1734-42. doi: 10.1109/TMI.2012.2198831.
10
Optimization of a LSO-Based Detector Module for Time-of-Flight PET.
IEEE Trans Nucl Sci. 2010 Jun 1;57(3):1570-1576. doi: 10.1109/TNS.2010.2047266.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验