Division of Science, Yale-NUS College, Singapore 138527;
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2156-E2164. doi: 10.1073/pnas.1712674115. Epub 2018 Feb 20.
Cartograms are maps that rescale geographic regions (e.g., countries, districts) such that their areas are proportional to quantitative demographic data (e.g., population size, gross domestic product). Unlike conventional bar or pie charts, cartograms can represent correctly which regions share common borders, resulting in insightful visualizations that can be the basis for further spatial statistical analysis. Computer programs can assist data scientists in preparing cartograms, but developing an algorithm that can quickly transform every coordinate on the map (including points that are not exactly on a border) while generating recognizable images has remained a challenge. Methods that translate the cartographic deformations into physics-inspired equations of motion have become popular, but solving these equations with sufficient accuracy can still take several minutes on current hardware. Here we introduce a flow-based algorithm whose equations of motion are numerically easier to solve compared with previous methods. The equations allow straightforward parallelization so that the calculation takes only a few seconds even for complex and detailed input. Despite the speedup, the proposed algorithm still keeps the advantages of previous techniques: With comparable quantitative measures of shape distortion, it accurately scales all areas, correctly fits the regions together, and generates a map projection for every point. We demonstrate the use of our algorithm with applications to the 2016 US election results, the gross domestic products of Indian states and Chinese provinces, and the spatial distribution of deaths in the London borough of Kensington and Chelsea between 2011 and 2014.
地图变形图是一种对地理区域(例如国家、地区)进行重新缩放的地图,以便其面积与定量人口数据(例如人口规模、国内生产总值)成比例。与传统的柱状图或饼图不同,地图变形图可以正确表示哪些区域共享共同边界,从而产生有洞察力的可视化效果,可以作为进一步空间统计分析的基础。计算机程序可以帮助数据科学家准备地图变形图,但开发一种可以快速转换地图上每个坐标(包括不在边界上的点)的算法,同时生成可识别的图像,一直是一个挑战。将地图变形转化为受物理启发的运动方程的方法已经很流行,但在当前硬件上,要以足够的精度求解这些方程仍然需要几分钟的时间。在这里,我们引入了一种基于流的算法,与以前的方法相比,其运动方程更容易数值求解。这些方程可以很容易地进行并行化,因此即使对于复杂和详细的输入,计算也只需几秒钟。尽管加速了计算速度,但所提出的算法仍然保留了以前技术的优点:在具有可比形状失真的定量度量的情况下,它可以准确地缩放所有区域,正确地将区域拼接在一起,并为每个点生成地图投影。我们通过应用于 2016 年美国选举结果、印度各州和中国各省的国内生产总值以及 2011 年至 2014 年伦敦肯辛顿和切尔西行政区的死亡人数的空间分布来展示我们算法的使用。