Suppr超能文献

利用气象变量和一种新颖的特征选择方法预测孟加拉国的登革热疫情。

Forecasting dengue in Bangladesh using meteorological variables with a novel feature selection approach.

作者信息

Al Mobin Mahadee

机构信息

Bangladesh Institute of Governance and Management, Dhaka, 1207, Bangladesh.

出版信息

Sci Rep. 2024 Dec 30;14(1):32073. doi: 10.1038/s41598-024-83770-0.

Abstract

Dengue, a mosquito-borne viral disease, continues to pose severe risks to public health and economic stability in tropical and subtropical regions, particularly in developing nations like Bangladesh. The necessity for advanced forecasting mechanisms has never been more critical to enhance the effectiveness of vector control strategies and resource allocations. This study formulates a dynamic data pipeline to forecast dengue incidence based on 13 meteorological variables using a suite of state-of-the-art machine learning models and custom features engineering, achieving an accuracy of 84.02%, marking a substantial improvement over existing studies. A novel wrapper feature selection algorithm employing a custom objective function is proposed in this study, which significantly improves model accuracy by 12.63% and reduces the mean absolute percentage error by 70.82%. The custom objective function's output can be transformed to quantify the contribution of each variable to the target variable's variability, providing deeper insights into the workings of black box models. The study concludes that relative humidity is redundant in predicting dengue infection, while meteorological factors exhibit more significant short-term impacts compared to long-term and immediate impacts. Sunshine (hours) emerges as the meteorological factor with the most immediate impact, whereas precipitation is the most impactful predictor over both short-term (8-month lag) and long-term (26-30-month lag) periods. Forecasts for 2024 using the best-performing model predict a rise in dengue cases starting in May, peaking at 24,000 cases per month by August and persisting at high levels through October before declining to half by year-end. These findings offer critical insights into temporal climate effects on dengue transmission, aiding the development of effective forecasting systems.

摘要

登革热是一种由蚊子传播的病毒性疾病,在热带和亚热带地区,尤其是在孟加拉国等发展中国家,继续对公众健康和经济稳定构成严重风险。先进的预测机制对于提高病媒控制策略和资源分配的有效性从未像现在这样至关重要。本研究构建了一个动态数据管道,使用一套最先进的机器学习模型和定制特征工程,基于13个气象变量预测登革热发病率,准确率达到84.02%,比现有研究有了显著提高。本研究提出了一种采用定制目标函数的新颖包装特征选择算法,该算法显著提高了模型准确率12.63%,并将平均绝对百分比误差降低了70.82%。定制目标函数的输出可以进行转换,以量化每个变量对目标变量变异性的贡献,从而更深入地了解黑箱模型的工作原理。研究得出结论,相对湿度在预测登革热感染方面是多余的,而气象因素的短期影响比长期和即时影响更为显著。日照(小时数)是影响最直接的气象因素,而降水是短期(滞后8个月)和长期(滞后26 - 30个月)最具影响力的预测因子。使用表现最佳的模型对2024年的预测显示,登革热病例从5月开始上升,8月达到每月24000例的峰值,并在10月前一直保持在高位,到年底下降一半。这些发现为气候对登革热传播的时间效应提供了关键见解,有助于开发有效的预测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b0e/11685631/fb6421152227/41598_2024_83770_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验