Suppr超能文献

基于核条件密度估计的传染病预测

Infectious disease prediction with kernel conditional density estimation.

作者信息

Ray Evan L, Sakrejda Krzysztof, Lauer Stephen A, Johansson Michael A, Reich Nicholas G

机构信息

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.

Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA 01075, USA.

出版信息

Stat Med. 2017 Dec 30;36(30):4908-4929. doi: 10.1002/sim.7488. Epub 2017 Sep 14.

Abstract

Creating statistical models that generate accurate predictions of infectious disease incidence is a challenging problem whose solution could benefit public health decision makers. We develop a new approach to this problem using kernel conditional density estimation (KCDE) and copulas. We obtain predictive distributions for incidence in individual weeks using KCDE and tie those distributions together into joint distributions using copulas. This strategy enables us to create predictions for the timing of and incidence in the peak week of the season. Our implementation of KCDE incorporates 2 novel kernel components: a periodic component that captures seasonality in disease incidence and a component that allows for a full parameterization of the bandwidth matrix with discrete variables. We demonstrate via simulation that a fully parameterized bandwidth matrix can be beneficial for estimating conditional densities. We apply the method to predicting dengue fever and influenza and compare to a seasonal autoregressive integrated moving average model and HHH4, a previously published extension to the generalized linear model framework developed for infectious disease incidence. The KCDE outperforms the baseline methods for predictions of dengue incidence in individual weeks. The KCDE also offers more consistent performance than the baseline models for predictions of incidence in the peak week and is comparable to the baseline models on the other prediction targets. Using the periodic kernel function led to better predictions of incidence. Our approach and extensions of it could yield improved predictions for public health decision makers, particularly in diseases with heterogeneous seasonal dynamics such as dengue fever.

摘要

创建能够准确预测传染病发病率的统计模型是一个具有挑战性的问题,其解决方案将使公共卫生决策者受益。我们使用核条件密度估计(KCDE)和copulas方法开发了一种解决此问题的新途径。我们使用KCDE获得各个星期发病率的预测分布,并使用copulas将这些分布关联成联合分布。这种策略使我们能够对季节高峰周的发病时间和发病率进行预测。我们对KCDE的实现纳入了两个新颖的核组件:一个用于捕捉疾病发病率季节性的周期组件,以及一个允许使用离散变量对带宽矩阵进行完全参数化的组件。我们通过模拟证明,完全参数化的带宽矩阵有助于估计条件密度。我们将该方法应用于预测登革热和流感,并与季节性自回归积分移动平均模型以及HHH4(一种先前发表的针对传染病发病率开发的广义线性模型框架的扩展)进行比较。在对各个星期登革热发病率的预测中,KCDE优于基线方法。在对高峰周发病率的预测方面,KCDE也比基线模型表现出更一致的性能,并且在其他预测目标上与基线模型相当。使用周期核函数能对发病率做出更好的预测。我们的方法及其扩展可为公共卫生决策者带来更优的预测,特别是对于登革热等具有异质季节动态的疾病。

相似文献

1
Infectious disease prediction with kernel conditional density estimation.基于核条件密度估计的传染病预测
Stat Med. 2017 Dec 30;36(30):4908-4929. doi: 10.1002/sim.7488. Epub 2017 Sep 14.
3
Prediction of infectious disease epidemics via weighted density ensembles.通过加权密度集合预测传染病疫情。
PLoS Comput Biol. 2018 Feb 20;14(2):e1005910. doi: 10.1371/journal.pcbi.1005910. eCollection 2018 Feb.

引用本文的文献

本文引用的文献

3
Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Predictions.使用连续预测提高流感预测准确性的辨别力。
PLoS Curr. 2015 Oct 5;7:ecurrents.outbreaks.8a6a3df285af7ca973fab4b22e10911e. doi: 10.1371/currents.outbreaks.8a6a3df285af7ca973fab4b22e10911e.
4
Flexible Modeling of Epidemics with an Empirical Bayes Framework.基于经验贝叶斯框架的流行病灵活建模。
PLoS Comput Biol. 2015 Aug 28;11(8):e1004382. doi: 10.1371/journal.pcbi.1004382. eCollection 2015 Aug.
6
Forecasting the 2013-2014 influenza season using Wikipedia.利用维基百科预测2013 - 2014年流感季节。
PLoS Comput Biol. 2015 May 14;11(5):e1004239. doi: 10.1371/journal.pcbi.1004239. eCollection 2015 May.
7
Twitter improves influenza forecasting.推特可改善流感预测。
PLoS Curr. 2014 Oct 28;6:ecurrents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117. doi: 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117.
8
Risk of dengue for tourists and teams during the World Cup 2014 in Brazil.2014年巴西世界杯期间游客及团队感染登革热的风险。
PLoS Negl Trop Dis. 2014 Jul 31;8(7):e3063. doi: 10.1371/journal.pntd.0003063. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验