Suppr超能文献

可扩展地从糖中制备力学可调的嵌段聚合物。

Scalable production of mechanically tunable block polymers from sugar.

机构信息

Departments of Chemical Engineering and Materials Science and.

Chemistry, University of Minnesota, Minneapolis, MN 55455-0431.

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8357-62. doi: 10.1073/pnas.1404596111. Epub 2014 May 27.

Abstract

Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA-PβMδVL-PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications.

摘要

发展可持续和可生物降解的材料对于化学工业的未来发展至关重要。为了使可再生产品在商业上具有竞争力,它必须在工业规模上具有经济可行性,并具有与现有石油衍生类似或更优的性能。很少有基于生物的聚合物能够满足这一艰巨的挑战。为了解决这一挑战,我们描述了一种高效的生物基途径来制备支化内酯β-甲基-δ-戊内酯(βMδVL),它可以转化为橡胶状(即低玻璃化转变温度)聚合物。我们进一步证明,βMδVL 和丙交酯的嵌段共聚可以得到一类具有可调节机械性能的新型高性能聚酯。这项工作的关键特点包括:创建了一条全生物合成途径来生产βMδVL;采用高产率化学反应将甲羟戊酸转化为βMδVL 的高效半合成方法;以及使用可控聚合技术来制备具有明确结构的 PLA-PβMδVL-PLA 三嵌段聚合物,其中 PLA 代表聚(丙交酯)。这种综合策略为广泛应用提供了一种经济可行的可持续塑料和弹性体的方法。

相似文献

1
Scalable production of mechanically tunable block polymers from sugar.可扩展地从糖中制备力学可调的嵌段聚合物。
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8357-62. doi: 10.1073/pnas.1404596111. Epub 2014 May 27.
10
One-Pot Catalysis: A Privileged Approach for Sustainable Polymers?一锅法催化:可持续聚合物的一种特权方法?
Acc Chem Res. 2022 Aug 16;55(16):2168-2179. doi: 10.1021/acs.accounts.2c00192. Epub 2022 Jul 26.

引用本文的文献

2
Chemical closed-loop recycling of polymers realized by monomer design.通过单体设计实现聚合物的化学闭环回收。
Fundam Res. 2024 Jun 6;5(3):951-965. doi: 10.1016/j.fmre.2024.05.015. eCollection 2025 May.
4
Expanding chemistry through in vitro and in vivo biocatalysis.通过体外和体内生物催化拓展化学。
Nature. 2024 Jul;631(8019):37-48. doi: 10.1038/s41586-024-07506-w. Epub 2024 Jul 3.
7
Emerging Trends in the Chemistry of End-to-End Depolymerization.端到端解聚化学的新趋势
JACS Au. 2023 Aug 23;3(9):2436-2450. doi: 10.1021/jacsau.3c00345. eCollection 2023 Sep 25.

本文引用的文献

1
Sustainable Polymers: Opportunities for the Next Decade.可持续聚合物:未来十年的机遇
ACS Macro Lett. 2013 Jun 18;2(6):550-554. doi: 10.1021/mz400207g. Epub 2013 Jun 5.
7
Biodegradable polyesters from renewable resources.可再生资源的可生物降解聚酯。
Annu Rev Chem Biomol Eng. 2013;4:143-70. doi: 10.1146/annurev-chembioeng-061312-103323. Epub 2013 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验