Departments of Chemical Engineering and Materials Science and.
Chemistry, University of Minnesota, Minneapolis, MN 55455-0431.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8357-62. doi: 10.1073/pnas.1404596111. Epub 2014 May 27.
Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA-PβMδVL-PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications.
发展可持续和可生物降解的材料对于化学工业的未来发展至关重要。为了使可再生产品在商业上具有竞争力,它必须在工业规模上具有经济可行性,并具有与现有石油衍生类似或更优的性能。很少有基于生物的聚合物能够满足这一艰巨的挑战。为了解决这一挑战,我们描述了一种高效的生物基途径来制备支化内酯β-甲基-δ-戊内酯(βMδVL),它可以转化为橡胶状(即低玻璃化转变温度)聚合物。我们进一步证明,βMδVL 和丙交酯的嵌段共聚可以得到一类具有可调节机械性能的新型高性能聚酯。这项工作的关键特点包括:创建了一条全生物合成途径来生产βMδVL;采用高产率化学反应将甲羟戊酸转化为βMδVL 的高效半合成方法;以及使用可控聚合技术来制备具有明确结构的 PLA-PβMδVL-PLA 三嵌段聚合物,其中 PLA 代表聚(丙交酯)。这种综合策略为广泛应用提供了一种经济可行的可持续塑料和弹性体的方法。