Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2347-2352. doi: 10.1073/pnas.1718622115. Epub 2018 Feb 20.
Bio-production of chemicals is an important driver of the societal transition toward sustainability. However, fermentations with heavily engineered production organisms can be challenging to scale to industrial volumes. Such fermentations are subject to evolutionary pressures that select for a wide range of genetic variants that disrupt the biosynthetic capacity of the engineered organism. Synthetic product addiction that couples high-yield production of a desired metabolite to expression of nonconditionally essential genes could offer a solution to this problem by selectively favoring cells with biosynthetic capacity in the population without constraining the medium. We constructed such synthetic product addiction by controlling the expression of two nonconditionally essential genes with a mevalonic acid biosensor. The product-addicted production organism retained high-yield mevalonic acid production through 95 generations of cultivation, corresponding to the number of cell generations required for >200-m industrial-scale production, at which time the nonaddicted strain completely abolished production. Using deep DNA sequencing, we find that the product-addicted populations do not accumulate genetic variants that compromise biosynthetic capacity, highlighting how synthetic networks can be designed to control genetic population heterogeneity. Such synthetic redesign of evolutionary forces with endogenous processes may be a promising concept for realizing complex cellular designs required for sustainable bio-manufacturing.
生物生产化学品是推动社会向可持续性发展转型的重要动力。然而,利用经过大量工程改造的生产生物进行发酵,可能难以扩大到工业规模。此类发酵受到进化压力的影响,会选择出大量破坏工程生物生物合成能力的遗传变异体。通过将所需代谢物的高产生产与非条件必需基因的表达偶联起来的合成产物成瘾,可以通过选择性地有利于群体中具有生物合成能力的细胞而不限制培养基来解决这个问题。我们通过使用甲羟戊酸生物传感器来控制两个非条件必需基因的表达来构建这种合成产物成瘾。在 95 代的培养过程中,产物成瘾的生产生物保持了高产甲羟戊酸的生产能力,这相当于 >200 立方米工业规模生产所需的细胞代次数,此时非成瘾菌株完全停止了生产。通过深度 DNA 测序,我们发现产物成瘾的群体不会积累影响生物合成能力的遗传变异体,这突出了如何设计合成网络来控制遗传群体异质性。通过内源性过程对进化力量进行这种合成重新设计,可能是实现可持续生物制造所需复杂细胞设计的一个有前途的概念。