Suppr超能文献

使用随机森林推断遗传网络:为基因表达数据赋予不同权重。

Inference of genetic networks using random forests: Assigning different weights for gene expression data.

作者信息

Kimura Shuhei, Tokuhisa Masato, Okada Mariko

机构信息

Faculty of Engineering, Tottori University, 4-101, Koyama-minami, Tottori 680-8552, Japan.

Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

J Bioinform Comput Biol. 2019 Aug;17(4):1950015. doi: 10.1142/S021972001950015X. Epub 2019 Apr 10.

Abstract

In using gene expression levels for genetic network inference, we believe that two measurements that are similar to each other are less informative than two measurements that differ from each other. Given, for example, that gene expression levels measured at two adjacent time points in a time-series experiment are often similar to each other, we assume that each measurement in the time-series experiment will be less informative than each measurement in a steady-state experiment. Based on this idea, we propose a new inference method that relies heavily on informative gene expression data. Through numerical experiments, we prove that the quality of an inferred genetic network is slightly improved by heavily weighting informative gene expression data. In this study, we develop a new method by modifying the existing random-forest-based inference method to take advantage of its ability to analyze both time-series and static gene expression data. The idea we propose can be similarly applied to many of the other existing inference methods, as well.

摘要

在利用基因表达水平进行遗传网络推断时,我们认为彼此相似的两个测量值所提供的信息不如彼此不同的两个测量值。例如,在时间序列实验中两个相邻时间点测得的基因表达水平通常彼此相似,我们假设时间序列实验中的每个测量值所提供的信息都不如稳态实验中的每个测量值。基于这一想法,我们提出了一种严重依赖信息丰富的基因表达数据的新推断方法。通过数值实验,我们证明了通过对信息丰富的基因表达数据进行重加权,推断出的遗传网络的质量会略有提高。在本研究中,我们通过修改现有的基于随机森林的推断方法开发了一种新方法,以利用其分析时间序列和静态基因表达数据的能力。我们提出的想法同样也可以应用于许多其他现有的推断方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验